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1. INTRODUCTION

The need for large-scale computing is increasing, driven by search engines, social net-
works, location-based services, and biological and scientific applications. The value
of these applications is defined by the quality and quantity of data over which they
operate, resulting in very high I/O and storage requirements. These Data-Intensive
Scalable Computing systems, or DISC systems [Bryant 2007], require searching and
sorting large quantities of data spread across the network. Sorting forms the kernel of
many data processing tasks in the datacenter, exercises computing, I/O, and storage
resources, and is a key bottleneck for many large-scale systems.

Several new DISC software architectures have been developed, including MapRe-
duce [Dean and Ghemawat 2004], the Google file system [Ghemawat et al. 2003],
Hadoop [2011], and Dryad [Isard et al. 2007]. These systems are able to scale lin-
early with the number of nodes in the cluster, making it trivial to add new processing
capability and storage capacity to an existing cluster by simply adding more nodes.
This linear scalability is achieved in part by exposing parallel programming models
to the user and by performing computation on data locally whenever possible. Hadoop
clusters with thousands of nodes are now deployed in practice [YahooCluster 2008].

Despite this linear scaling behavior, per-node performance has lagged behind per-
server capacity by more than an order of magnitude. A survey of several deployed
DISC sorting systems [Anderson and Tucek 2009] found that the impressive results
obtained by operating at high scale mask a typically low individual per-node efficiency,
requiring a larger-than-needed scale to meet application requirements. For example,
among these systems as much as 94% of available disk I/O and 33% CPU capacity re-
mained idle [Anderson and Tucek 2009]. The largest known industrial Hadoop clusters
achieve only 20Mbps of average bandwidth for large-scale data sorting on machines
theoretically capable of supporting a factor of 100 more throughput.

In this work we present TritonSort, a highly efficient sorting system designed to
sort large volumes of data across dozens of nodes. We have applied it to datasets as
large as 100 terabytes spread across 832 disks in 52 nodes. The key to TritonSort’s
efficiency is its balanced software architecture, which is able to effectively make use
of a large amount of colocated storage per node, ensuring that the disks are kept as
utilized as possible. Our results show the benefit of our design: evaluating TritonSort
against the “Indy” GraySort benchmark [SortBenchMark 2010] resulted in a system
that was able to sort 100TB of input tuples in about 66% of the absolute time of the
previous record-holder, but with four times fewer resources, resulting in an increase in
per-node efficiency by over a factor of six.

It is important to note that our focus in building TritonSort is to highlight the
efficiency gains that can be obtained in building systems that process significant
amounts of data through balancing computation, storage, memory, and network. Sys-
tems such as Hadoop and Dryad further support data-level replication, transparent
node failure, and a generalized computational model, all of which are not currently
present in TritonSort. TritonSort sorts fixed-size 100-byte tuples, which is an as-
pect of the sortbenchmark.org sorting grand challenge problem. This challenge is de-
signed to stress the I/O capabilities of the sorting system, and so while it does not
map directly onto real datacenter workloads, it does serve as a reasonable proxy for
them.

However, in presenting TritonSort’s hardware and software architecture, we de-
scribe several lessons learned in its construction that we believe are generalizable to
other data processing systems. For example, our design relies on a very high disk-to-
node ratio as well as an explicit, application-level management of in-memory buffers
to minimize disk seeks and thus increase read and write throughput. We choose buffer
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sizes to balance time spent processing multiple stages of our sort pipeline, and trade
off the utilization of one resource for another.

Our experiences show that for a common datacenter workload, systems can be built
with commodity hardware and open-source software that improve on per-node effi-
ciency by an order of magnitude while still achieving scalability. This is particular
evident with the high number of tuples sorted in the JouleSort [Rivoire et al. 2007]
benchmark. Building such systems will either enable significantly less expensive sys-
tems to be able to do the same work or provide the ability to address significantly
larger problem sets with the same infrastructure.

The primary contributions of this article are: (1) the selection of a balanced hard-
ware platform tuned to support a large-scale sort application, (2) a sort application
implemented on top of a staged, pipeline-oriented software runtime that supports
performance tuning via selection of appropriate buffer sizes and quantities, (3) an
examination of projected sort performance when bottlenecks are removed, and (4) a
discussion of the experience gained in building and deploying this prototype at scale.

2. DESIGN CHALLENGES

In this article, we focus on designing systems that sort large datasets as an instance of
the larger problem of building balanced systems. Here, we present our precise problem
formulation, discuss the challenges involved, and outline the key insights underlying
our approach.

2.1. Problem Formulation

We seek to design a system that sorts large volumes of input data. Based on the spec-
ification of the sort benchmark [SortBenchMark 2010], our input data comprises 100-
byte tuples with a 10-byte key and 90-byte value. The keys and values of these tu-
ples are uniformly generated at random, providing a uniform distribution across the
keyspace. This requirement is part of the “challenge problem” nature of the sorting
challenge, namely that it provides a clear (and solvable) specification to compare sort-
ing systems as technology changes over time. We target deployments with input data
on the order of tens to hundreds of TB of randomly generated tuples. The input data
is stored as a collection of files on persistent storage. The goal of a sorting system is
to transform this input data into an ordered set of output files, also stored on persis-
tent storage, such that the concatenation of these output files in order constitutes the
sorted version of the input data. In accordance with the rules of the sorting challenge,
we delete the input data during our sorting run, after it is processed. This is because
our cluster does not have enough disk capacity to hold the input data, necessary inter-
mediate data, as well as the output data at once (since for 100TB, and given the size
of our cluster, each disk could have to store 266GB of input data, and 266GB of output
data. However, our disks are only 500GB in size). Our goal is to design and implement
a sorting system that can sort datasets of the targeted size while achieving a favorable
trade-off between speed, resource utilization, and cost.

2.2. The Challenge of Efficient Sorting

Sorting large datasets places stress on several resources in a cluster. First, storing
tens to hundreds of TB of input and output data demands a large amount of storage
capacity. Given the size of the data and modern commodity hard drive capacities, the
data must be stored across several storage devices and almost certainly across many
machines. Second, reading the input data and writing the output data across many
disks simultaneously places load on both storage devices and I/O controllers. Third,
since the tuples are distributed randomly across the input files, almost all of the large
dataset to be sorted will have to be sent over the network. Finally, comparing tuples
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in order to sort them requires a nontrivial amount of compute power. This combina-
tion of demands makes designing a sorting system that efficiently utilizes all of these
resources challenging.

Our key design principle to ensure good resource utilization is to construct a bal-
anced system—a system that drives all resources at as close to 100% utilization as
possible. For any given application and workload, there will be an ideal configuration
of hardware resources in keeping with the application’s demands on these resources.
In practice, the set of hardware configurations available is limited by the availability of
components (one cannot currently, for example, buy a processor with exactly 13 cores),
and so a configuration must be chosen that best meets the application’s demands. Once
that hardware configuration is determined, the application must be architected to suit-
ably exploit the full capabilities of the deployed hardware. In the following section, we
outline our considerations in designing such a balanced system, including our choice
of a specific hardware and software architecture. We did not choose this platform with
sorting in mind, and so we believe that our design generalizes to other DISC problems
as well.

2.3. Design Considerations

Our system’s design is motivated by three main considerations. First, we rely only on
commodity hardware components. This is both to keep the costs of our system rela-
tively low and to have our system be representative of today’s data centers so that the
lessons we learn can be applied to other applications with workload characteristics
similar to those of sort. Hence, we do not make use of networking substrates such as
Infiniband that provide high network bandwidth at high cost. Also, despite the recent
emergence of Solid State Drives (SSDs) that provide higher I/O rates, we chose to use
hard disks because they continue to provide the most affordable option for high capac-
ity storage and streaming I/O. We believe that properly architected sorting software
should not stress random I/O behavior, where SSDs currently excel.

Second, we focus our software architecture on minimizing disk seeks. In the partic-
ular hardware configuration we chose, the key bottleneck for sort among the various
system resources is disk I/O bandwidth. Hence, the primary goal of the system is to
enable all disks to operate continuously at peak bandwidth. The main challenge in
sustaining peak disk bandwidth is to minimize the amount of time the disks spend
seeking, since any time seeking is not spent transferring data.

Third, we choose to focus on hardware architectures whose total memory cannot
contain the entire dataset. One possible implementation of sort is to read all the input
data into memory, appropriately shuffle the data across machines in the cluster, sort
the local in-memory data on each machine, and then write the sorted data to the local
disks. Note that in this case, every tuple is read from and written to persistent storage
exactly once. However, this implementation would require an amount of memory at
least equal to the amount of input data; given that the cost per GB of RAM is over 70
times more than that of disks, such a design would significantly drive up costs and be
infeasible for large input datasets. Although not the primary focus of this work, we do
evaluate an entirely in-memory sort in Section 5.5.

Instead, we pursue an alternative implementation wherein every tuple is read and
written multiple times from disk before the data is completely sorted. Storing inter-
mediate results on disk makes the system’s memory requirement far more modest.
Sorting data on clusters that have less memory than the total amount of data to be
sorted requires every input tuple to be read and written at least twice [Aggarwal and
Vitter 1988]. Since every additional read and write increases the time to sort, we seek
to achieve exactly this lower bound to maximize system performance. In TritonSort,
half the disks in the cluster are devoted to intermediate data. Given that intermediate
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Fig. 1. Resource options considered for constructing a cluster for a balanced sorting system. These values
are estimates as of January, 2010.

data is no longer needed after the sort is complete, devoting such a large proportion
of storage to it might seem wasteful. However, our aim is to build the most balanced
system possible, and so at this point we require that the intermediate storage pool be
as large as the input/output storage pool. In unbalanced storage configurations where
that property does not hold and that are I/O limited, then one or the other pool will be
a bottleneck at runtime.

2.4. Hardware Architecture

To determine the right hardware configuration for our application, we make the fol-
lowing observations about the sort workload. First, the application needs to read every
byte of the input data and the size of the input is equal to that of the output. Since the
working set is so large, it does not make sense to separate the cluster into computation-
heavy and storage-heavy regions. Instead, we provision each server in the cluster with
an equal amount of processing power and disks.

Second, sort demands both significant capacity and I/O requirements from storage
since tens to hundreds of TB of data is to be stored and all the data is to be read
and written twice. As mentioned before, we quickly ruled out the use of flash, even
though it supports significantly higher I/O operations per second than disk, and has a
higher sustained throughput (in the range of 2–4x the throughput of disk). However,
the GB/$ cost for an entirely flash-based approach was too excessive to pursue. We
also ruled out the use of flash on the PCIe bus, since its high cost( over $10/GB) would
have necessitated a storage solution over $1M. Thus, for this effort, we constrained
our selection to disks. We first survey a range of hard disk options shown in Figure 1.
We find that 7.2k-RPM SATA disks provide the most cost-effective option in terms of
balancing $ per GB and $ per read/write MBps (assuming we can achieve streaming
I/O). The most cost-effective direct-attach packaging option we had were servers with
16 disks per server. Since building our cluster in January of 2010, we have since
updated this table to include recent pricing for the storage components (the server
costs are difficult to directly compare since the original configurations are no longer
available). Even here, in terms of total capacity and streaming I/O, the 7.2k-RPM
drives provide the lowest cost option. Allowing 16 disks to operate at full streaming I/O
throughput, we require storage controllers that are able to sustain at least 1600MBps
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of streaming bandwidth. Because of the PCI bus’ bandwidth limitations, our hardware
design necessitated two 8x PCI drive controllers, each supporting 8 disks.

Third, almost all of the data needs to be exchanged between machines since input
data is randomly distributed throughout the cluster and adjacent tuples in the sorted
sequence must reside on the same machine. To balance the system, we need to ensure
that this all-to-all shuffling of data can happen in parallel without network bandwidth
becoming a bottleneck. Since we focus on using commodity components, we use an Eth-
ernet network fabric. Commodity Ethernet is available in a set of discrete bandwidth
levels—1Gbps, 10Gbps, and 40Gbps—with cost increasing proportional to throughput
(see Figure 1). Given our choice of 7.2k-RPM disks for storage, a 1Gbps network can
accommodate at most one disk per server without the network throttling disk I/O.
Therefore, we settle on a 10Gbps network; 40Gbps Ethernet has yet to mature and
hence is still cost prohibitive. Our choice of 16 disks is in balance with a 10Gbps net-
work interconnect. Based on the options available commercially for such a server, we
use a server that hosts 16 disks and 8 CPU cores. The choice of 8 cores was driven by
the available processor packaging: two physical quad-core CPUs. The larger the num-
ber of separate threads, the more stages that can be isolated from each other. In our
experience, the actual speed of each of these cores was a secondary consideration.

The final design choice in provisioning our cluster is the amount of memory each
server should have. The primary purpose of memory in our system is to enable large
amounts of data buffering so that we can read from and write to the disk in large
chunks. The larger these chunks become, the more data can be read or written be-
fore seeking is required. We initially provisioned each of our machines with 12GB of
memory; however, during development we realized that 24GB was required to provide
sufficiently large writes, and so the machines were upgraded. We discuss this addi-
tion when we present our architecture in Section 3. One of the key takeaways from
our work is the important role that buffering plays in enabling high utilization of the
network, disk, and CPU. Determining the appropriate amount of memory buffering is
not straightforward and we leave to future work techniques that help automate this
process.

2.5. Software Architecture

To maximize cluster resource utilization, we need to design an appropriate software
architecture. We started with a a particular concrete starting point in terms of soft-
ware: Debian Linux running the 2.6 kernel, the XFS file system, and an application
written in C++. We will revisit and justify this starting point later in this article. There
are a range of possible software architectures in keeping with our constraint of reading
and writing every input tuple at most twice. The class of architectures upon which we
focus share a similar basic structure. These architectures consist of two phases sepa-
rated by a distributed barrier, so that all nodes must complete phase one before phase
two begins. In the first phase, input data is read from disk and routed to the node upon
which it will ultimately reside. Each node is responsible for storing a disjoint portion
of the key space. When data arrives at its destination node, that node writes the data
to its local disks. In the second phase, each node sorts the data on its local disks in
parallel. At the end of the second phase, each node has a portion of the final sorted
sequence stored on its local disks, and the sorted sequences stored on all nodes can be
concatenated together to form the final sorted sequence.

There are several possible implementations of this general architecture, but any im-
plementation contains at least a few basic software elements. These software elements
include Readers that read data from on-disk files into in-memory buffers, Writers that
write buffers to disk, Distributors that distribute a buffer’s tuples across a set of logical
divisions, and Sorters that sort buffers.
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Fig. 2. Performance of a Heaper-Merger sort implementation in microbenchmark on a 200GB per disk
parallel external merge-sort as a function of the number of files merged per disk.

Our initial implementation of TritonSort was designed as a distributed parallel ex-
ternal merge-sort. This architecture, which we will call the Heaper-Merger architec-
ture, is structured as follows. In phase one, Readers read from the input files into
buffers, which are sorted by Sorters. Each sorted buffer is then passed to a Distrib-
utor, which splits the buffer into a sorted chunk per node and sends each chunk to
its corresponding node. Once received, these sorted chunks are heap-sorted by soft-
ware elements called Heapers in batches and each resulting sorted batch is written to
an intermediate file on disk. In the second phase, software elements called Mergers
merge-sort the intermediate files on a given disk into a single sorted output file.

The problem with the Heaper-Merger architecture is that it does not scale well. In
order to prevent the Heaper in phase one from becoming a bottleneck, the length of
the sorted runs that the Heaper generates is usually fairly small, on the order of a
few hundred megabytes. As a consequence, the number of intermediate files that the
Merger must merge in phase two grows quickly as the size of the input data increases.
This reduces the amount of data from each intermediate file that can be buffered at a
time by the Merger and requires that the merger fetch additional data from files much
more frequently, causing many additional seeks.

To demonstrate this problem, we implemented a simple Heaper-Merger sort module
in microbenchmark. We chose to sort 200GB per disk in parallel across all the disks
to simulate the system’s performance during a 100TB sort. Each disk’s 200GB dataset
is partitioned among an increasingly large number of files. Each node’s memory is
divided such that each input file and each output file can be double-buffered. As shown
in Figure 2, increasing the number of files being merged causes throughput to decrease
dramatically as the number of files increases above 1000.

TritonSort uses an alternative architecture with similar software elements as de-
tailed before and again involving two phases. We partition the input data into a set of
logical partitions; with D physical disks and L logical partitions, each logical partition

corresponds to a contiguous 1
L

th
fraction of the key space and each physical disk hosts

L
D logical partitions. In the first phase, Readers pass buffers directly to Distributors. A
Distributor maps the key of every tuple in its input buffer to its corresponding logical
partition and sends that tuple over the network to the machine that hosts this logical
partition. Tuples for a given logical partition are buffered in memory and written to
disk in large chunks in order to seek as little as possible. In the second phase, each
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Fig. 3. Block diagram of TritonSort’s phase one architecture.

logical partition is read into an in-memory buffer, that buffer is sorted, and the sorted
buffer is written to disk. This scheme bypasses the seek limits of the earlier merge-
sort-based approach. Also, by appropriately choosing the value of L, we can ensure
that logical partitions can be read, sorted, and written in parallel in the second phase.
Since our testbed nodes have 24GB of RAM, to ensure this condition we set the number
of logical partitions per node to 2520 so that each logical partition contains less than
1GB of tuples when we sort 100TB on 52 nodes. We explain this architecture in more
detail in the context of our implementation in the next section.

3. DESIGN AND IMPLEMENTATION

TritonSort is a distributed, staged, pipeline-oriented dataflow processing system. In
this section, we describe TritonSort’s design and motivate our design decisions for each
stage in its processing pipeline.

3.1. Architecture Overview

Figures 3 and 8 show the stages of a TritonSort program. Stages in TritonSort are
organized in a directed graph (with cycles permitted). Each stage in TritonSort imple-
ments part of the data processing pipeline and either sources, sinks, or transmutes
data flowing through it.

Each stage is implemented by two types of logical entities—several workers and a
single WorkerTracker . Each worker runs in its own thread and maintains its own local
queue of pending work. We refer to the discrete pieces of data over which workers op-
erate as work units or simply as work. The WorkerTracker is responsible for accepting
work for its stage and assigning that work to workers by enqueueing the work onto the
worker’s work queue. In each phase, all the workers for all stages in that phase run in
parallel.

Upon starting up, a worker initializes any required internal state and then waits
for work. When work arrives, the worker executes a stage-specific run() method that
implements the specific function of the stage, handling work in one of three ways.
First, it can accept an individual work unit, execute the run() method over it, and then
wait for new work. Second, it can accept a batch of work (up to a configurable size)
that has been enqueued by the WorkerTracker for its stage. Last, it can keep its run()
method active, polling for new work explicitly. TritonSort stages implement each of
these methods, as described shortly. In the process of running, a stage can produce
work for a downstream stage and optionally specify the worker to which that work
should be directed. If a worker does not specify a destination worker, work units are
assigned to workers round-robin.

In the process of executing its run() method, a worker can get buffers from and
return buffers to a shared pool of buffers. This buffer pool can be shared among the
workers of a single stage, but is typically shared between workers in pairs of stages
with the upstream stage getting buffers from the pool and the downstream stage
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putting them back. When getting a buffer from a pool, a stage can specify whether or
not it wants to block waiting for a buffer to become available if the pool is empty.

3.2. Sort Architecture

We implement sort in two phases. First, we perform distribution sort to partition the
input data across L logical partitions evenly distributed across all nodes in the cluster.
Each logical partition is stored in its own logical disk. All logical disks are of identical
maximum size sizeLD (though not necessarily entirely full) and consist of files on the
local file system.

The value of sizeLD is chosen such that logical disks from each physical disk can be
read, sorted, and written in parallel in the second phase, ensuring maximum resource
utilization. Therefore, if the size of the input data is sizeinput, there are L = sizeinput

sizeLD
logical disks in the system. In phase two, the tuples in each logical disk get sorted
locally and written to an output file. This implementation satisfies our design goal of
reading and writing each tuple twice.

To determine which logical disk holds which tuples, we logically partition the 10-
byte key space into L even divisions. We logically order the logical disks such that
the kth logical disk holds tuples in the kth division. Sorting each logical disk produces
a collection of output files, each of which contains sorted tuples in a given partition.
Hence, the ordered collection of output files represents the sorted version of the data.
In this article, we assume that tuples’ keys are distributed uniformly over the key
range which ensures that each logical disk is approximately the same size; we discuss
how TritonSort can be made to handle nonuniform key ranges in Section 6.1.

To ensure that we can utilize as much read/write bandwidth as possible on each
disk, we partition the disks on each node into two groups of 8 disks each. One group of
disks holds input and output files; we refer to these disks as the input disks in phase
one and as the output disks in phase two. The other group holds intermediate files;
we refer to these disks as the intermediate disks. In phase one, input files are read
from the input disks and intermediate files are written to the intermediate disks. In
phase two, intermediate files are read from the intermediate disks and output files are
written to the output disks. Thus, the same disk is never concurrently read from and
written to, which prevents unnecessary seeking.

3.3. TritonSort Architecture: Phase One

Phase one of TritonSort, diagrammed in Figure 3, is responsible for reading input
tuples off of the input disks, distributing those tuples over to the network to the nodes
on which they belong, and storing them into the logical disks in which they belong.

Reader. Each Reader is assigned an input disk and is responsible for reading input
data off of that disk. It does this by filling 80MB ProducerBuffers with input data. We
chose this size because it is large enough to obtain near sequential throughput from
the disk. The Reader stage produces up to 800MBps from its eight stages. However,
each stage spends the vast majority of its time in the iowait state, waiting on the
underlying disk. Thus we are able to multiplex all eight Reader stages onto a single
CPU core.

NodeDistributor. A NodeDistributor (shown in Figure 4) receives a ProducerBuffer
from a Reader and is responsible for partitioning the tuples in that buffer across the
machines in the cluster. It maintains an internal data structure called a NodeBuffer
table, which is an array of NodeBuffers, one for each of the nodes in the cluster. A
NodeBuffer contains tuples belonging to the same destination machine. Its size was
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Fig. 4. The NodeDistributor stage, responsible for partitioning tuples by destination node.

Fig. 5. The Sender stage, responsible for sending data to other nodes.

chosen to be the size of the ProducerBuffer divided by the number of nodes, and is
approximately 1.6MB in size for the scales we consider in this article.

The NodeDistributor scans the ProducerBuffer tuple by tuple. For each tuple, it com-
putes a hash function H(k) over the tuple’s key k that maps the tuple to a unique host
in the range [0, N – 1]. It uses the NodeBuffer table to select a NodeBuffer correspond-
ing to host H(k) and appends the tuple to the end of that buffer. If that append oper-
ation causes the buffer to become full, the NodeDistributor removes the NodeBuffer
from the NodeBuffer table and sends it downstream to the Sender stage. It then gets
a new NodeBuffer from the NodeBuffer pool and inserts that buffer into the newly
empty slot in the NodeBuffer table. Once the NodeDistributor is finished processing a
ProducerBuffer, it returns that buffer back to the ProducerBuffer pool. The through-
put of a single instance of the NodeDistributor stage is about 300MBps, based on its
two primary tasks of scanning memory in a linear manner, and hashing tuples. Thus,
we require three of these stages, capable of handling 900MBps, to keep up with the
Reader stages, which produce 800MBps.

Sender. The Sender stage (shown in Figure 5) is responsible for taking NodeBuffers
from the upstream NodeDistributor stage and transmitting them over the network
to each of the other nodes in the cluster. To keep up with the Reader stages, it must
be able to send data at 800MBps, or about 6.4Gbps, to ensure that the Reader stages
do not suffer from backpressure. Each Sender maintains a separate TCP socket per
peer node in the cluster. The Sender stage can be implemented in a multithreaded
or a single-threaded manner. In the multithreaded case, N Sender workers are
instantiated in their own threads, one for each destination node. Each Sender worker
simply issues a blocking send() call on each NodeBuffer it receives from the upstream
NodeDistributor stage, sending tuples in the buffer to the appropriate destination
node over the socket open to that node. When all the tuples in a buffer have been
sent, the NodeBuffer is returned to its pool, and the next one is processed. For reasons
described in Section 4.1, we choose a single-threaded Sender implementation instead.
Here, the Sender interleaves the sending of data across all the destination nodes
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Fig. 6. The Receiver stage, responsible for receiving data from other nodes’ Sender stages.

in small nonblocking chunks, so as to avoid the overhead of having to activate and
deactivate individual threads for each send operation to each peer.

Unlike most other stages, which process a single unit of work during each invoca-
tion of their run() method, the Sender continuously processes NodeBuffers as it runs,
receiving new work as it becomes available from the NodeDistributor stage. This is
because the Sender must remain active to alternate between two tasks: accepting
incoming NodeBuffers from upstage NodeDistributors, and sending data from ac-
cepted NodeBuffers downstream. To facilitate accepting incoming NodeBuffers, each
Sender maintains a set of NodeBuffer lists, one for each destination host. Initially
these lists are empty. The Sender appends each NodeBuffer it receives onto the list of
NodeBuffers corresponding to the incoming NodeBuffer’s destination node.

To send data across the network, the Sender loops through the elements in the set
of NodeBuffer lists. If the list is nonempty, the Sender accesses the NodeBuffer at the
head of the list, and sends a fixed-sized amount of data to the appropriate destination
host using a nonblocking send() call. If the call succeeds and some amount of data was
sent, then the NodeBuffer at the head of the list is updated to note the amount of its
contents that have been successfully sent so far. If the send() call fails, because the TCP
send buffer for that socket is full, that buffer is simply skipped and the Sender moves
on to the next destination host. When all of the data from a particular NodeBuffer is
successfully sent, the Sender returns that buffer back to its pool.

Receiver. The Receiver stage, shown in Figure 6, is responsible for receiving data
from other nodes in the cluster, appending that data onto a set of NodeBuffers, and
passing those NodeBuffers downstream to the LogicalDiskDistributor stage. In Tri-
tonSort, the Receiver stage is instantiated with a single worker. On starting up, the
Receiver opens a server socket and accepts incoming connections from Sender work-
ers on remote nodes. Its run() method begins by getting a set of NodeBuffers from a
pool of such buffers, one for each source node. The Receiver then loops through each
of the open sockets, reading up to 16KB of data at a time into the NodeBuffer for that
source node using a nonblocking recv() call. This small socket read size is due to the
rate-limiting fix that we explain in Section 4.1. If data is returned by that call, it is
appended to the end of the NodeBuffer. If the append would exceed the size of the
NodeBuffer, that buffer is sent downstream to the LogicalDiskDistributor stage, and a
new NodeBuffer is retrieved from the pool to replace the NodeBuffer that was sent.

LogicalDiskDistributor. The LogicalDiskDistributor stage, shown in Figure 7, re-
ceives NodeBuffers from the Receiver that contain tuples destined for logical disks on
its node. LogicalDiskDistributors are responsible for distributing tuples to appropri-
ate logical disks and sending groups of tuples destined for the same logical disk to the
downstream Writer stage.
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Fig. 7. The LogicalDiskDistributor stage, responsible for distributing tuples across logical disks and buffer-
ing sufficient data to allow for large writes.

The LogicalDiskDistributor’s design is driven by the need to buffer enough data to
issue large writes and thereby minimize disk seeks and achieve high bandwidth. In-
ternal to the LogicalDiskDistributor are two data structures: an array of LDBuffers,
one per logical disk, and an LDBufferTable. An LDBuffer is a buffer of tuples destined
to the same logical disk. Each LDBuffer is 12,800 bytes long, which is the least com-
mon multiple of the tuple size (100 bytes) and the direct I/O write size (512 bytes).
The LDBufferTable is an array of LDBuffer lists, one list per logical disk. Addition-
ally, LogicalDiskDistributor maintains a pool of LDBuffers, containing 1.25 million
LDBuffers, accounting for 20 of each machine’s 24GB of memory.

ALGORITHM 1: The LogicalDiskDistributor stage
1: NodeBuffer ← getNewWork()
2: {Drain NodeBuffer into the LDBufferArray}
3: for all tuples t in NodeBuffer do
4: dst = H(key(t))
5: LDBufferArray[dst].append(t)
6: if LDBufferArray[dst].isFull() then
7: LDTable.insert(LDBufferArray[dst])
8: LDBufferArray[dst] = getEmptyLDBuffer()
9: end if
10: end for
11: {Send full LDBufferLists to the Coalescer}
12: for all physical disks d do
13: while LDTable.sizeOfLongestList(d) ≥ 5MB do
14: ld ← LDTable.getLongestList(d)
15: Coalescer.pushNewWork(ld)
16: end while
17: end for

The operation of a LogicalDiskDistributor worker is described in Algorithm 1. In line
1, a full NodeBuffer is pushed to the LogicalDiskDistributor by the Receiver. Lines 3
to 10 are responsible for draining that NodeBuffer tuple by tuple into an array of LD-
Buffers, indexed by the logical disk to which the tuple belongs. Lines 12 to 17 examine
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Fig. 8. Block diagram of TritonSort’s phase two architecture. The number of workers for a stage is indicated
in the lower-right corner of that stage’s block, and the number of disks of each type is indicated in the lower-
right corner of that disk’s block.

the LDBufferTable, looking for logical disk lists that have accumulated enough data
to write out to disk. We buffer at least 5MB of data for each logical disk before flush-
ing that data to disk to prevent many small write requests from being issued if the
pipeline temporarily stalls. When the minimum threshold of 5MB is met for any par-
ticular physical disk, the longest LDBuffer list for that disk is passed to the Coalescer
stage on line 15.

The original design of the LogicalDiskDistributor only used the LDBuffer array de-
scribed before and used much larger LDBuffers (~10MB each) rather than many small
LDBuffers. The Coalescer stage (described in the following text) did not exist; instead,
the LogicalDiskDistributor transferred the larger LDBuffers directly to the Writer
stage.

This design was abandoned due to its inefficient use of memory. Temporary imbal-
ances in input distribution could cause LDBuffers for different logical disks to fill at
different rates. This, in turn, could cause an LDBuffer to become full when many other
LDBuffers in the array are only partially full. If an LDBuffer is not available to replace
the full buffer, the system must block (either immediately or when an input tuple is
destined for that buffer’s logical disk) until an LDBuffer becomes available. One obvi-
ous solution to this problem is to allow partially full LDBuffers to be sent to the Writers
at the cost of lower Writer throughput. This scheme introduced the further problem
that the unused portions of the LDBuffers waiting to be written could not be used by
the LogicalDiskDistributor. In an effort to reduce the amount of memory wasted in
this way, we migrated to the current architecture, which allows small LDBuffers to be
dynamically reallocated to different logical disks as the need arises. This comes at the
cost of additional computational overhead and memory copies, but we deem this cost
to be acceptable due to the small cost of memory copies relative to disk seeks.

Coalescer. The operation of the Coalescer stage is simple. A Coalescer will copy tu-
ples from each LDBuffer in its input LDBuffer list into a WriterBuffer and pass that
WriterBuffer to the Writer stage. It then returns the LDBuffers in the list to the LD-
Buffer pool.

Originally, the LogicalDiskDistributor stage did the work of the Coalescer stage.
While optimizing the system, however, we realized that the nontrivial amount of time
spent merging LDBuffers into a single WriterBuffer could be better spent processing
additional NodeBuffers.

Writer. The operation of the Writer stage is also quite simple. When a Coalescer
pushes a WriterBuffer to it, the Writer worker will determine the logical disk corre-
sponding to that WriterBuffer and write out the data using a blocking write() system
call. When the write completes, the WriterBuffer is returned to the pool.
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We initially considered an asynchronous I/O (AIO) implementation of the Writer
stage, in which the Writer instances would issue write() requests that immediately
return. Later, when the disks finish writing the data, they would signal the completion
back to the caller who would return the buffer to the buffer pool. Unfortunately, the
implementation of AIO on our particular version of Linux does not ensure that the
interrupts are delivered to the core that issued the write() operation, which would hurt
inter-stage performance isolation. Furthermore, the AIO support did not appear to
work properly, in that the calling thread was blocked until each individual AIO call
completed. Since we have only eight Writer instances, and since each write() operation
runs for a relatively long time, it was not a problem multiplexing multiple Writer
stages on a single hyperthread.

3.4. TritonSort Architecture: Phase Two

Once phase one completes, all of the tuples from the input dataset are stored in ap-
propriate logical disks across the cluster’s intermediate disks. In phase two, each of
these unsorted logical disks is read into memory, sorted, and written out to an output
disk. The pipeline is straightforward: Reader and Writer workers issue sequential,
streaming I/O requests to the appropriate disk, and Sorter workers operate entirely in
memory.

Reader. The phase two Reader stage is identical to the phase one Reader stage,
except that it reads into a PhaseTwoBuffer, which is the size of a logical disk.

Sorter. The Sorter stage performs an in-memory sort on a PhaseTwoBuffer. A vari-
ety of sort algorithms can be used to implement this stage, however, we selected the
use of radix sort due to its speed. Radix sort requires additional memory overhead
compared to an in-place sort like QuickSort, and so the sizes of our logical disks have
to be sized appropriately so that enough Reader-Sorter-Writer pipelines can operate
in parallel. Our version of radix sort first scans the buffer, constructing a set of struc-
tures containing a pointer to each tuple’s key and a pointer to the tuple itself. These
structures are then sorted by key. Once the structures have been sorted, they are used
to rearrange the tuples in the buffer in-place. This reduces the memory overhead for
each Sorter substantially at the cost of additional memory copies.

Writer. The phase two Writer writes a PhaseTwoBuffer sequentially to a file on an
output disk (which used to contain the input data, before it was deleted during sorting).
As in phase one, each Writer is responsible for writes to a single output disk.

Because the phase two pipeline operates at the granularity of a logical disk, we can
operate several of these pipelines in parallel, limited by either the number of cores in
each system (we can’t have more pipelines than cores without sacrificing performance
because the Sorter is CPU-bound), the amount of memory in the system (each pipeline
requires at least three times the size of a logical disk to be able to read, sort, and
write in parallel), or the throughput of the disks. In our case, the limiting factor is the
output disk bandwidth. To host one phase two pipeline per input disk requires storing
24 logical disks in memory at a time. To accomplish this, we set sizeLD to 850MB, using
most of the 24GB of RAM available on each node and allowing for additional memory
required by the operating system. To sort 850MB logical disks fast enough to not block
the Reader and Writer stages, we find that four Sorters suffice.

3.5. Stage and Buffer Sizing

One of the major requirements for operating TritonSort at near disk speed is ensuring
cross-stage balance. Each stage has an intrinsic execution time, either based on the
speed of the device to which it interfaces (e.g., disks or network links), or based on the
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Fig. 9. Median stage runtimes for a 52-node, 100TB sort, excluding the amount of time spent waiting for
buffers.

Fig. 10. Hardware implementation of each node in the cluster used to evaluate TritonSort.

amount of CPU time it requires to process a work unit. Figure 9 shows the speed and
performance of each stage in the pipeline. Shown is the worker type (described earlier),
the average size of each buffer it processes, the runtime to process each buffer, the
number of worker instances included in our deployment, and finally the throughput
(per stage and in aggregate across all instances of that stage type, respectfully). The
bottleneck stage can be determined by looking at the minimum value in the rightmost
column. In our implementation, we are limited by the speed of the Writer stage in both
phases one and two.

3.6. Hardware Implementation

Figure 10 describes the resulting hardware configuration of the cluster used to eval-
uate TritonSort. This configuration corresponds to the design decisions described in
Sections 2.4 and 2.3.

4. OPTIMIZATIONS

In implementing the TritonSort architecture, we learned that several nonobvious opti-
mizations were necessary to meet our desired goal of driving every disk at full utiliza-
tion. Here, we present the key takeaways from our experience. In each case, we believe
these lessons generalize to a wide variety of DISC systems.

4.1. Network

For TritonSort to operate at the aggregate sequential streaming bandwidth of all of its
disks, the network must be able to sustain the read throughput of eight disks while
data is being shuffled among nodes in the first phase. Since the 7.2k-RPM disks we use
deliver at most 100MBps of sequential read throughput (Table I), the network must be
able to sustain 6.4Gbps of all-pairs bandwidth, irrespective of the number of nodes in
the cluster.

It is well-known that sustaining high-bandwidth flows in datacenter networks,
especially all-to-all patterns, is a significant challenge. In-network reasons for this
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Fig. 11. Comparing the scalability of single-threaded and multithreaded Receiver implementations.

include commodity datacenter network hardware, incast, queue buildup, and buffer
pressure [Alizadeh et al. 2010], and in-host reasons include overhead in the socket and
network stack, as well as thread scheduling policies to ensure that data is fairly in-
jected into the network. A major challenge in TritonSort is supporting a large number
of open connections while ensuring that downstream stages do not stall waiting for
work. We found that the primary reason for this was data not going into the network
due to endhost network stack overhead, due to unfairness in the thread scheduler,
causing starvation of individual flows (and thus downstream pipeline stalls).

Initially, we chose a straightforward multithreaded design for the Sender and Re-
ceiver stages in which there were N Senders and N Receivers, one for each TritonSort
node. In this design, each Sender issues blocking send() calls on a NodeBuffer until it is
sent. Likewise, on the destination node, each Receiver repeatedly issues blocking recv()
calls until a NodeBuffer has been received. Because the number of CPU hyperthreads
on each of our nodes is typically much smaller than 2N, we pinned all Senders’ threads
to a single hyperthread and all Receivers’ threads to a single separate hyperthread.

Figure 11 shows that this multithreaded approach does not scale well with the num-
ber of nodes, dropping below 4Gbps at scale. This poor performance is due to thread
scheduling overheads at the end hosts. TCP receive buffers can fill up much faster
than individual threads can be scheduled to sink the incoming data, especially given
the latency of activating and deactivating multiple threads responsible for draining
each of these sockets. The Receiver stage must clear out each of its buffers sufficiently
fast that data does not unnecessarily queue. Since there are 52 such buffers, a Receiver
must visit and clear a receive buffer in just over 20 μs. A Receiver worker thread can-
not drain the socket, block, go to sleep, and get woken up again fast enough to service
buffers at this rate.

To circumvent this problem we implemented a single-threaded, nonblocking Re-
ceiver that scans through each socket in round-robin order, copying out any available
data and storing it in a NodeBuffer during each pass through the array of open sockets.
This implementation is able to clear each socket’s Receiver buffer faster than the ar-
rival rate of incoming data. Figure 11 shows that this design scales well as the cluster
grows. One limitation of this design is that for a single-threaded Sender and receive,
the scale of the cluster is limited to the number of sockets that a single thread can fill
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Fig. 12. Microbenchmark indicating the ideal disk throughput as a function of write size.

or drain without blocking. If we were to build a much larger cluster (e.g., 512 nodes),
we would need to assign multiple hyperthreads to the Sender and Receiver stages.

4.2. Minimizing Disk Seeks

Key to making the TritonSort pipeline efficient is minimizing the total amount of time
spent performing disk seeks, both while writing data in phase one and while reading
that data in phase two. As individual write sizes get smaller, the throughput drops,
since the disk must occasionally seek between individual write operations. Figure 12
shows disk write throughput measured by a synthetic workload generator writing to
a configurable set of files with different write sizes. Ideally, the Writer would receive
WriterBuffers large enough that it can write them out at close to the sequential rate
of the disk, for example, 80MB. However, the amount of available memory limits Tri-
tonSort’s write sizes. Since the tuple space is uniformly distributed across the logical
disks, the LogicalDiskDistributor will fill its LDBuffers at approximately a uniform
rate. Buffering 80MB worth of tuples for a given logical disk before writing to disk
would cause the buffers associated with all of the other logical disks to become approx-
imately as full. This would mandate significantly higher memory needs than what is
available in our hardware architecture. Hence, the LogicalDiskDistributor stage must
emit smaller WriterBuffers, and it must interleave writes to different logical disks.

4.3. The Importance of File Layout

The physical layout of individual logical disk files plays a strong role in trading off
performance between the phase one Writer and the phase two Reader. One strategy is
to append to the logical disk files in a log-structured manner, in which a WriterBuffer
for one logical disk is immediately appended after the WriterBuffer for a different
logical disk. This is possible if the logical disks’ blocks are allocated on demand. It has
the advantage of making the phase one Writer highly performant, since it minimizes
seeks and leads to near-sequential write performance. On the other hand, when a
phase two Reader begins reading a particular logical disk, the underlying physical
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disk will need to seek frequently to read each of the WriterBuffers making up the
logical disk.

An alternative approach is to greedily allocate all of the blocks for each of the logical
disks at start time, ensuring that all of a logical disk’s blocks are physically contigu-
ous on the underlying disk. This can be accomplished with the fallocate() system call,
which provides a hint to the file system to preallocate blocks. In this scheme, inter-
leaved writes of WriterBuffers for different logical disks will require seeking, since
two subsequent writes to different logical disks will need to write to different contigu-
ous regions on the disk. However, in phase two, the Reader will be able to sequentially
read an entire logical disk with minimal seeking. We also use fallocate() on input and
output files so that phase one Readers and phase two Writers seek as little as possible.

The location of output files on the output disks also has a dramatic effect on phase
two’s performance. If we do not delete the input files before starting phase two, the
output files are allocated space on the interior cylinders of the disk. When evaluating
phase two’s performance on a 100TB sort, we found that we could write to the interior
cylinders of the disk at an average rate of 64MBps. When we deleted the input files
before phase two began, ensuring that the output files would be written to the exterior
cylinders of the disk, this rate jumped to 84MBps. For the evaluations in Section 5, we
delete the input files before starting phase two. For reference, the fastest we have been
able to write to the disks in microbenchmark has been approximately 90MBps.

4.4. CPU Scheduling

Modern operating systems support a wide variety of static and dynamic CPU schedul-
ing approaches, and there has been considerable research into scheduling disciplines
for data processing systems. We put a significant amount of effort into isolating stages
from one another by setting the processor affinities of worker threads explicitly, but
we eventually discovered that using the default Linux scheduler results in a steady-
state performance that is only about 5% worse than any custom scheduling policy
we devised. In our evaluation, we use our custom scheduling policy unless otherwise
specified.

4.5. Pipeline Demand Feedback

Initially, TritonSort was entirely “push”-based, meaning that a worker only processed
work when it was pushed to it from a preceding stage. While simple to design, cer-
tain stages perform suboptimally when they are unable to send feedback back in the
pipeline as to what work they are capable of doing. For example, the throughput of the
Writer stage in phase one is limited by the latency of writes to the intermediate disks,
which is governed by the sizes of WriterBuffers sent to it as well as the physical layout
of logical disks (due to the effects of seek and rotational delay). In its naı̈ve implemen-
tation, the LogicalDiskDistributor sends work to the Writer stage based on which of
its LDBuffer lists is longest with no regard to how lightly or heavily loaded the Writ-
ers themselves are. This can result in an imbalance of work across Writers, with some
Writers idle and others struggling to process a long queue of work. This imbalance can
destabilize the whole pipeline and lower total throughput.

One possible approach that we could have used would have been to add a writer
scheduler. This scheduler could have served as a load balancer, intercepting work units
from the pipeline and distributing them to Writer instances based on their observed
queue lengths. In our case, we chose a different approach in which we introduce a
layer of indirection between the LogicalDiskDistributor and the Writers. This indirec-
tion layer must communicate information about the sizes of Writers’ work queues to
upstream stages. We do this by creating a pool of write tokens. Every write token is
assigned a single “parent” Writer. We assign parent Writers in round-robin order to
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tokens as the tokens are created and create a number of tokens equal to the number
of WriterBuffers. When the LogicalDiskDistributor has buffered enough LDBuffers so
that one or more of its logical disks is above the minimum write threshold (5MB), the
LogicalDiskDistributor will query the write token pool, passing it a set of Writers for
which it has enough data. If a write token is available for one of the specified Writ-
ers in the set, the pool will return that token, otherwise it will signal that no tokens
are available. The LogicalDiskDistributor is required to pass a token for the target
Writer along with its LDBuffer list to the next stage. This simple mechanism prevents
any Writer’s work queue from growing longer than its “fair share” of the available
WriterBuffers and provides reverse feedback in the pipeline without adding any new
architectural features.

5. EVALUATION

We now evaluate TritonSort’s performance and scalability under various hardware
configurations.

5.1. Evaluation Environment

We evaluated TritonSort on a 52-node cluster of HP DL380G6 servers, each with two
Intel E5520 CPUs (2.27 GHz), 24GB of memory, and sixteen 500GB 7,200 RPM 2.5”
SATA drives. Each hard drive is configured with a single XFS partition. Each XFS par-
tition is configured with a single allocation group to prevent file fragmentation across
allocation groups, and is mounted with the noatime, attr2, nobarrier, and noquota
flags set. Each server has two HP P410 drive controllers with 512MB on-board cache,
as well as a Myricom 10Gbps network interface. We use a 52-port Cisco Nexus 5020
datacenter switch for the all experiments except for MinuteSort, which uses a Cisco
Nexus 5596UP switch. The servers run Linux 2.6.35.1, and our implementation of Tri-
tonSort is written in C++. TritonSort consists of 25,078 lines of C++ code, and 19,167
lines of Python.

5.2. Comparison to Previous GraySort Recordholders

The 100TB Indy GraySort benchmark was introduced in 2009, and hence there are
few systems against which we can compare TritonSort’s performance. The most recent
holder of the Indy GraySort benchmark, DEMSort [Rahn et al. 2009], sorted slightly
over 100TB of data on 195 nodes at a rate of 564GB per minute. TritonSort currently
sorts 100TB of data on 52 nodes at a rate of 938GB per minute, a factor of six improve-
ment in per-node efficiency. Each DEMSort node contained four disks, for a total of 780
disks, whereas each TritonSort node contains 16 disks, for a total of 832 disks. So the
six per-node improvement for TritonSort comes at the expense of about 7% more disks
compared to DEMSort.

5.3. Examining Changes in Balance

We next examine the effect of changing the cluster’s configuration to support more
memory or faster disks. Due to budgetary constraints, we could not evaluate these
hardware configurations at scale, and so we carry out a more limited evaluation.

In the first experiment, we replaced the 500GB, 7200RPM disks that are used
as the intermediate disks in phase one and the input disks in phase two with
146GB, 15000RPM disks. The reduced capacity of the drives necessitated running an
experiment with a smaller input dataset. To allow space for the logical disks to be
preallocated on the intermediate disks without overrunning the disks’ capacity, we
decreased the number of logical disks per physical disk by a factor of two. This doubles
the amount of data in each logical disk, but the experiment’s input dataset is small
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Fig. 13. Effect of increasing speed of intermediate disks on a two-node, 500GB sort.

Fig. 14. Effect of increasing the amount of memory per node on a two-node, 2TB sort.

enough that the amount of data per logical disk does not overflow the logical disk’s
maximum size.

Phase one throughput in these experiments is slightly lower than in subsequent
experiments because the 30–35 seconds it takes to write the last few bytes of each
logical disk at the end of the phase is roughly 10% of the total runtime due to the
relatively small dataset size.

The results of this experiment are shown in Figure 13. We first examine the effect
of decreasing the number of logical disks without increasing disk speed. Decreasing
the number of logical disks increases the average length of LDBuffer chains formed
by the LogicalDiskDistributor; note that most of the time, full WriterBuffers (14MB)
are written to the disks. In addition, halving the number of logical disks decreases the
number of external cylinders that the logical disks occupy, decreasing maximal seek
latency. These two factors combine together to net a significant (11%) increase in phase
one throughput.

The performance gained by writing to 15000 RPM disks in phase one is much less
pronounced. The main reason for this is that the increase in write speed causes the
Writers to become fast enough that the LogicalDiskDistributor exposes itself as the
bottleneck stage. One side-effect of this is that the LogicalDiskDistributor cannot pop-
ulate WriterBuffers as fast as they become available, so it reverts to a pathological
case in which it always is able to successfully retrieve a write token and hence contin-
uously writes minimally filled (5MB) buffers. Creating a LogicalDiskDistributor stage
that dynamically adjusts its write size based on write token retrieval success rate is
the subject of future work.

In the next experiment, we doubled the RAM in two of the machines in our cluster
and adjusted TritonSort’s memory allocation by doubling the size of each WriterBuffer
(from 14MB to 28MB) and using the remaining memory (22GB) to create additional
LDBuffers. As shown in Figure 14, increasing the amount of memory allows for the
creation of longer chains of LDBuffers in the LogicalDiskDistributor, which in turn
causes write sizes to increase. Although larger write sizes mean that larger writes are
amortized across individual disk seeks, the resulting increase in total system perfor-
mance has diminishing, nonlinear returns.

5.4. TritonSort Scalability

Figure 15 shows TritonSort’s total throughput when sorting 1TB per node as the num-
ber of nodes increases from 2 to 48. Phase two exhibits practically linear scaling, which
is expected since each node performs phase two in isolation. Phase one’s scalability is
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Fig. 15. Throughput when sorting 1TB per node as the number of nodes increases.

also nearly linear; the slight degradation in its performance at large scales is likely due
to network variance that becomes more pronounced as the number of nodes increases.

5.5. MinuteSort: An In-Memory Sort Implementation

For the MinuteSort benchmark, we modify our architecture as follows. In the first
phase, as before, we read the input data and distribute tuples across machines based
on the logical disk to which the tuple maps. However, logical disks are maintained
in memory instead of being written to disk immediately. In phase two (once all input
tuples have been transferred to their appropriate logical disks), the in-memory logical
disks are directly passed to workers that sort them. These sorters in turn pass sorted
logical disks to writers to be written to disk. Hence, logical disks are still written to
disk but are not written until after they have been sorted. This enables us to make
use of 16 Writer stages, since we can separate reads and writes to disk in time (versus
separating those operations by partitioning the disks into input and intermediate disks
in the case of out-of-memory sorting described before). The goal of MinuteSort is to sort
as much data as possible in under one minute, and thus the evaluation metric is “GB
per node.”

Running TritonSort in its MinuteSort configuration on 66 nodes resulted in 20.5GB
per node for a total of 1353GB of data. We performed 15 consecutive trials. For these
trials, TritonSort’s median elapsed time was 59.2 seconds, with a maximum time of
61.7 seconds, a minimum time of 57.7 seconds, and an average time of 59.2 seconds.
All times were rounded to the nearest tenth of a second. Only 3 of the 15 consecutive
trials had completion times longer than 60 seconds. Although MinuteSort and Joule-
Sort (described in the following section) test against a different number of nodes than
Indy and Daytona GraySort, their results can be qualitatively compared, given that
the scalabilty we have observed is nearly linear across the range of nodes that we test
against.

5.6. JouleSort: A Measure of Energy Efficiency

A key motivation to building a balanced sorting system is improving per-node effi-
ciency. A potential effect of improved efficiency is lowering the energy requirements to
complete a given task, and in this section we describe a quantitative study of the use
of energy in TritonSort. A new sorting category of the annual GraySort challenge is
the 100TB JouleSort category. The evaluation metric in this categoy is “records sorted
per Joule.” TritonSort is the first system to set the records sorted per Joule benchmark
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at 100TB data sizes, and so we do not have a particular point of comparison to know
how much better we do as compared to the state-of-the-art in data centers.

For the 100TB Indy JouleSort benchmark, we ran on 52 nodes and one experiment
head node, all of which are HP DL380G6 servers. We employed two different method-
ologies for measuring the power consumed by the cluster during each sorting run.
First, we relied on the built-in meter included in each server. Each server comes
equipped with an embedded power measurement system as part of its Integrated
Lights-Out (ILO) system. Unfortunately, the ILO cannot be queried more than once
every 15–20 seconds because the onboard service processor is quite slow and a sepa-
rate SSL connection must be set up and torn down for each query issued to the meter.

To cross-check and provide sufficiently fine-grained measurements, we next at-
tached a WattsUp [WattsUpMeter 2011] power meter to a machine at random for
each of our trials. We measured the observed power draw throughout the run from
that representative server and extrapolated its power to account for the power of the
experiment servers. We also performed a similar measurement on the experimental
control node; since the control node is not doing anything particularly intensive
(monitoring the power of each machine and recording experiment time), its power
consumption is relatively low. In practice, we found that the average draw for the
control node was 134 Watts.

We also had to account for the power used by our Cisco 5596UP datacenter switch.
To do this, we plugged that switch into an Avocent PM 3000V PDU [AvocentPDU 2011]
during our sorting run. This PDU has remote access through a command-line interface
and SNMP. For each outlet, it keeps track of the minimum, maximum, and present
power draw. We used the maximum power draw reported after the run was completed
over the lifetime of that switch’s operation as an estimate of the instantaneous power
draw. This overestimates the value somewhat, but made the power calculations easier.
In fact, there was only a small difference between the values observed during the run
and the maximum value observed since the switch was plugged into the PDU, and so
the effect on precision was small. We ran a total of five trials to measure the energy
required to perform each sorting run.

When evaluated against the Indy GraySort workload, TritonSort sorted an average
of 9703 records per Joule with a standard deviation of 351 records per Joule. To put
this in context, FAWNSort [Fawnsort 2010], the most energy-efficient sorting system
for the 108-byte sort benchmark, sorted data at 44,900 records per Joule. FAWNSort
is based on low-power Atom processors and flash SSDs. While TritonSort had a lower
record per Joule rate, its ability to sort such a large amount of data over a modest
number of nodes provides it with significant energy savings compared to previous sys-
tems. In addition to measuring this particular sort run, we also want to determine how
the energy requirement varies with the number of nodes. Although we were unable to
rerun additional energy studies with different numbers of nodes, we note that the scal-
ability of TritonSort is almost linear (see Figure 15), and so we can estimate the energy
draw as E(N) ≈ N*Eserver + Eswitch, where N is the number of nodes, Eserver is the av-
erage energy used by a single server, and Eswitch is the energy used by the switch. In
the experiments we performed in our testbed, Eserver = 2.764 MJ for 100TB Daytona
sort, Eserver = 2.109 MJ for 100TB Indy sort, and Eswitch = 8.332 MJ in both cases.

To determine how accurate the measurements we were receiving from the nodes’
ILO systems were, we also recorded the ILO power measurements from each of the
nodes at 15-second intervals. We found that the power measured by the ILO system
lags that measured by the WattsUp meter by exactly five minutes. Figure 16 shows
both the maximum, minimum, and “present” power reported by the ILO and the power
reported by the WattsUp meter during an Indy JouleSort run.
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Fig. 16. Power consumed by TritonSort on a representative node during an Indy GraySort run.

In these runs you can see that there is a sharp reduction in power usage about
halfway through the sort run. This is a result of the barrier between phases one and
two. Due to the natural variation in node performance, some nodes finish phase one
earlier than others, and so their power usage is reduced. However, none of the nodes
can start phase two until all nodes are done with phase one, which results in the gap
visible in Figure 16.

The WattsUp meter’s data is more variable during phase two; we suspect that this
is due to the fact that the CPU is far more active during phase two than it is during
the other phases. However, if we look at the median power reported by the WattsUp
meter during each 30-second interval throughout the run, we notice that the WattsUp
meter’s measurements track the ILO’s measurements quite closely.

6. FUTURE WORK

In this section, we discuss our system and present directions for future work.
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6.1. Supporting More General Sorting

Two assumptions that we make in our design are that tuples are uniform in size, and
that they are uniformly and identically distributed across the input files. TritonSort
can be extended to support nonuniform tuple sizes by extending the tuple data struc-
ture to keep key and value lengths. The most major modification that this will neces-
sitate will be supporting the in-memory sort of keys in phase two, which will require
modifications to the phase two Sorter stage. To support the nonuniform distribution
of keys across input files, we plan to implement a new phase that will operate before
TritonSort begins in which a random small subset of the input data is scanned, deter-
mining a histogram of the key distribution. Using this empirical distribution, we will
determine a hash function that spreads tuples across nodes as uniformly as possible.

6.2. Automated Performance Tuning

In the current TritonSort prototype, the sizes of individual buffers, the number of
buffers of each type, and the number of workers implementing each stage are deter-
mined manually. Key to supporting more general hardware configurations and more
general DISC applications is the ability to determine these quantities automatically
and dynamically. This automatic selection will need to be performed both statically at
design time, and dynamically during runtime based on observed conditions. A stage’s
performance on synthetic data in isolation provides a good upper bound on its real
performance and makes choosing between different implementations easier, but any
such synthetic analysis does not take runtime conditions such as CPU scheduling and
cache contention into account. Therefore, some manner of online learning algorithm
will likely be necessary for the system to determine a good configuration at scale.

6.3. Incorporating SSDs into TritonSort

To achieve nearly sequential speed throughput to the disks, writes must be large. How-
ever, limited per-node memory capacity and high memory cost makes it hard to allocate
more than 25MB of memory to each WriterBuffer. Here, we discuss a possible use of
SSDs to provide high write speeds with much smaller buffers.

If we were to add three 80GB SSDs to each machine, we could set up a pipeline
in which these SSDs are divided between the eight Writers, so that each Writer has
30GB of SSD space. The LogicalDiskDistributor passes data for each logical disk to the
Writer stage in small chunks, where Writers write them to the SSDs. Assuming 315
logical disks per Writer, this gives each logical disk 95MB of space on the SSD. Because
the SSD can handle such a large number of IOPS, there is no penalty for small writes
as there is with standard hard drives. Once 80MB of data is written to a single logical
disk on the SSDs, the Writer initiates a sendfilev() system call that causes a sequential
DMA transfer of that data from the SSD to the appropriate intermediate disk. This
should lower our memory requirements to 24GB, while permitting extremely large
writes. This approach relies on two features: significant PCI bandwidth to support
parallel transfers to the SSDs, and an SSD array present in the node able to provide
high streaming bandwidth to the SSDs; we will need such an array to simultaneously
support over 640MBps of parallel writes and 640MBps of parallel reads to fully utilize
the disks.

7. RELATED WORK

The design of TritonSort is based on a long history of disk-to-disk sorting systems and
database techniques. In this section, we highlight this related work.

Disk-to-disk sorting and dataflow systems. Good benchmarks are critical for im-
provements within a particular area, and this is especially true for sorting systems.
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The Datamation sorting benchmark [Anon et al. 1985] initially measured the elapsed
time to sort one million records from disk to disk. As hardware has improved, the
number of records has grown to its current level of 100TB. Over the years, numerous
authors have reported the performance of their sorting systems against this bench-
mark, and we benefit from their insights [Arpaci-Dusseau et al. 1997; Hadoop 2011;
Kuszmaul 2007; Nyberg et al. 1995, 1997; Rahn et al. 2009; Wyllie 2005].

NOWSort [Arpaci-Dusseau et al. 1997] was the first of the aforementioned sorting
systems to run on a shared-nothing cluster. NOWSort employs a two phase pipeline
that generates multiple sorted runs in the first phase and merges them together in
the second phase, a technique shared by DEMSort [Rahn et al. 2009]. An evaluation
of NOWSort done in 1998 [Arpaci-Dusseau et al. 1998] found that its performance
was limited by I/O bus bandwidth and poor instruction locality. Modern PCI buses and
multicore processors have largely eliminated these concerns; in practice, TritonSort is
bottlenecked by disk bandwidth.

An important aspect of efficient disk I/O is taking advantage of the multiple disks
that might be attached to a node. A common approach to increasing disk bandwidth
is to stripe input data across all disks in a node or, more generally, across all disks in
a cluster. AlphaSort [Nyberg et al. 1995] and NOWSort [Arpaci-Dusseau et al. 1997]
both employ this method to increase disk bandwidth. NOWSort additionally adjusts
the sizes of the stripes on different disks proportional to their speed. Aggarwal and
Vitter show that any external sort must do a minimum of two reads and two writes
of the data to be sorted [Aggarwal and Vitter 1988]. We have designed TritonSort to
ensure that exactly two reads and two writes are issued on each tuple during the
entirety of its execution.

Achieving per-resource balance in a large-scale data processing system is the sub-
ject of a large volume of previous research dating back at least as far as 1970. Among
the more well-known guidelines for building such systems are the Amdahl/Case
rules of thumb for building balanced systems [Amdahl 1970] and Gray and Putzolu’s
“five-minute rule” [Gray and Putzolu 1987] for trading off memory and I/O capacity.
These guidelines have been reevaluated and refreshed as hardware capabilities have
increased.

TritonSort’s staged, pipelined dataflow architecture is inspired in part by SEDA
[Welsh et al. 2001], a staged, event-driven software architecture that decouples worker
stages by interposing queues between them. Other DISC systems such as Dryad
[Isard et al. 2007] export a similar model, although Dryad has fault-tolerance and
data redundancy capabilities that TritonSort does not currently implement.

Parallel databases. Some of the first systems to explore parallelizing pipelined
dataflow systems were parallel databases. One of the first parallel database systems
to be deployed on a shared-nothing cluster was the Gamma database machine [De-
Witt et al. 1990]. To maximize throughput, Gamma employs horizontal partitioning,
also called declustering. Declustering involves spreading the rows of a relational table
across many disks so that queries can be optimized to take advantage of the aggregate
bandwidth of all disks in the cluster. Gamma provides three different strategies for
declustering a table that can be specified when it is created: round-robin, hash, and
range-partitioned. When planning a query, Gamma takes this distribution informa-
tion into account and tries to execute as much of the query plan without moving data
between nodes as possible. In the case of TritonSort, each tuple is moved exactly twice.
Our sampling approach mimics Gamma’s split table abstraction.

An alternative to the split table approach that focuses on hiding the details of net-
work I/O from operators is known as the exchange operator and was developed as part
of the Volcano parallel database system [Graefe 1994]. From the query optimizer’s
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perspective, the exchange operator is just another operator. Any notion of data par-
titioning and flow control are encapsulated within this operator, allowing all other
operators to be implemented and executed without regard to parallelism. Abstractly,
the exchange operator exports the traditional iterator interface to other operators.
It is typically implemented as a pair of operators, one that produces tuples and one
that consumes them. The producer operator pulls data from its child operator(s) and
pushes that data to the consumer operator. Each exchange producer for a given oper-
ator is connected to every corresponding exchange consumer for that operator in the
cluster.

The Fault-Tolerant Load Balancing Exchange (FLuX) [Shah et al. 2003] provides an
exchange operator that adjusts to performance faults and can also provide content-
sensitive partitioning. While FLuX provides both a fault-tolerance and a load balanc-
ing component, its load balancing component is most relevant to our discussion of
TritonSort. FLuX is designed for Continuous Query (CQ) environments, where data is
continually arriving from some source and must be processed in real time. As such, it
cannot afford to have the producer side of the exchange operator block waiting for con-
sumers. Its high-level goal, like RiverDQ’s [Arpaci-Dusseau 2003], is to keep the rate
at which consumers process data as balanced as possible by minimizing imbalances,
which can be caused by higher-than-desired skew in the data or performance faults. To
deal with short-term imbalances, FLuX places a transient skew buffer between the pro-
ducer side of the FLuX operator and its child operator(s). The transient skew buffer is
essentially a buffer that allows FLuX to reorder tuples when transmitting them. If the
transient skew buffer has available space, the FLuX producer calls next on its child
operator and inserts it into the buffer. It then sends tuples to an unblocked consumer,
if such a consumer exists. This allows FLuX to service unblocked consumers until the
consumers that are blocked due to the imbalance become unblocked.

8. CONCLUSIONS

In this work, we describe the hardware and software architecture necessary to build
TritonSort, a highly efficient, pipelined, stage-driven sorting system designed to sort
tens to hundreds of TB of data. This efficiency was obtained by selecting a distributed
partitioned sort algorithm which ensures that each data item is read and written ex-
actly twice, which is the theoretical lower bound for out-of-core sort implementations.
We coupled this algorithm with careful management of system resources to ensure
cross-resource balance. The result is that we are able to sort tens of GB of data per
node per minute, resulting in 938GB/min across only 52 nodes.

In addition to demonstrating the performance of sort on a particular balanced hard-
ware platform, we also evaluated against two different hardware configurations: one
with greater per-node memory capacity, and another with faster disks. We believe the
work holds a number of lessons for balanced system design and for scale-out archi-
tectures in general, and will help inform the construction of more balanced data pro-
cessing systems that will bridge the gap between scalability and per-node efficiency.
The key lessons we learned in constructing TritonSort include: (1) the importance
of partitioning disks based on their expected I/O workload (e.g., sustained read or
write), (2) the importance of fine-grained buffering at the application layer to take
advantage of application semantics of expected data movement, (3) the high impact of
thread scheduling on network performance, and (4) the importance of sustaining high
throughput to deliver low-energy workloads.

As compute and disk technology evolves, we believe the techniques presented in this
work can be used to construct hardware and software instances that ensure that the
system’s bottleneck is as close as possible to the underlying capability of the hardware.
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