
IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 1

Local Recovery for High Availability
in Strongly Consistent Cloud Services

James W. Anderson, Hein Meling, Alexander Rasmussen, Amin Vahdat, and Keith Marzullo

Abstract—Emerging cloud-based network services must deliver both good performance and high availability. Achieving both of
these goals requires content replication across multiple sites. Many cloud-based services either require or would benefit from the
semantics and simplicity of strong consistency. However, replication techniques for strong consistency can severely limit the availability
of replicated services when recovering large data objects over wide-area links.
To address this problem, we present the design and implementation of ZORFU, a hierarchical system architecture for replication across
data centers. The primary contribution of ZORFU is a local recovery technique that significantly increases availability of replicated
strongly consistent services. Local recovery achieves this by reducing the recovery time by an order of magnitude, while imposing only
a negligible latency overhead. Experimental results show that ZORFU can recover a 100MB object in 4ms.

Index Terms—Wide-area state machine replication; Hierarchical replication; Paxos; Local recovery; Dependability analysis.

F

1 INTRODUCTION

Traditional desktop applications, such as word pro-
cessing, email, and photo management are increasingly
moving to server-based deployments. However, moving
applications to the cloud can reduce availability because
Internet path availability averages only two-nines [1]. If
a user’s application state is isolated on a single server,
the availability for that user is limited by the path
availability between the user’s desktop and that server.
Hence, to improve availability, application state must be
replicated across multiple servers placed in geographi-
cally distributed data centers.

Replicating state across data centers, however, makes
it harder to maintain consistency across updates. Main-
taining strong consistency [2] is essential for correct
system behavior for many cloud-based services. Other
services that tolerate weak consistency [3] may still
benefit from the simplified semantics offered by strong
consistency. Examples include collaborative applications,
electronic commerce, and financial analysis. The need for
strong consistency has also been recognized by promi-
nent cloud providers [4], [5], [6].

Providing strong consistency for data hosted at mul-
tiple sites is difficult because different updates, possibly
from different users, could be directed at servers in
different data centers. Even if updates are directed to
the same server, the order in which multiple updates are
committed to application state must be the same across
all copies of the state.

• J. W. Anderson, A. Rasmussen, A. Vahdat and K. Marzullo are with
the Department of Computer Science and Engineering, University of
California San Diego. E-mail: jwanderson@gmail.com, alexras@acm.org,
vahdat@cs.ucsd.edu, marzullo@cs.ucsd.edu.

• H. Meling is with the Department of Electrical Engineering and Computer
Science, University of Stavanger, Norway. E-mail: hein.meling@uis.no.

Strong consistency is typically achieved using a Repli-
cated State Machine (RSM) model [2], based on a con-
sensus algorithm such as Paxos [7], [8] to order state
machine operations. In this context, a fundamental re-
quirement for strong consistency in RSMs is that 2f + 1
replicas are needed to tolerate f failures. Moreover, we
target real-world deployment with billions of objects [9]
stored across several data centers, each with tens of
thousands of machines. At this scale, there is constantly
a need to recover from common machine failures, and
to do so without human intervention.

In this paper, we address the problem of automated
recovery of RSMs across geographically distributed data
centers connected by a wide-area network. In this sce-
nario, we identify a window of vulnerability while recov-
ering from a failure, during which a subsequent failure
can cause the RSM to block indefinitely. This situation
demands manual recovery, which would significantly
reduce the system’s availability. This can happen if more
than f failures occur before completing recovery from
previous failures. It can also happen if the RSM state
is not synchronized with a replacement replica before a
subsequent failure occurs. Thus, despite the availability
of at least f + 1 replicas, application-level RSM state is
not synchronized sufficiently quickly to allow the RSM
to safely1 process updates. The existence of this window
of vulnerability directly affects system availability, and it
becomes particularly problematic when objects are large
or synchronization takes place over relatively slow or
congested wide-area links. These are exactly the scenar-
ios we target.

The principal contribution of this work is ZORFU, a
system architecture for hierarchical replication designed
to increase RSM availability by reducing the window
of vulnerability that occurs during failure recovery. To

1. An RSM needs f + 1 replicas to make progress, and remain safe.



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 2

reach this goal, ZORFU uses asynchronous replication
between a primary and a backup within each data center,
along with synchronous replication between primaries
across data centers.

A second contribution facilitated by ZORFU’s architec-
ture is a local recovery mechanism that can quickly replace
a failed replica, insulating machine failures within a data
center from replicas in other data centers. Our local
recovery mechanism makes use of a scalable and fault
tolerant software switch to hide the internal replica allo-
cations within each data center. This allows us to recover
replica failures locally, without incurring costly wide-
area RSM reconfigurations, resulting in a significantly
shorter window of vulnerability. Our experimental re-
sults show that our switch adds only a negligible delay
compared to the wide-area latency. Typically, a switch
is shared across multiple RSMs, depending on the load
requirements of each RSM. To cope with a larger number
of RSMs, we simply can deploy additional switches.

Our third contribution is an analytic dependability
analysis of ZORFU’s impact on system availability, com-
pared to two other design alternatives (Section 7). We
show that our local recovery mechanism provides sig-
nificant availability gain over the other designs.

The paper proceeds as follows. Section 2 explains the
reasons for the window of vulnerability, and argues that
a traditional flat replication scheme is not suitable for
wide-area replication. Section 3 describes the system
model, and gives an overview of ZORFU, followed by a
detailed description in Section 4. ZORFU is described as
a stepwise refinement, starting from a Paxos-based state
machine implementation [7]. In Section 5 we present im-
portant design details pertaining to the software switch
and a controller infrastructure used by ZORFU. Section 6
discuss design choices and resource costs of ZORFU.
Section 7 contains our analytic dependability analysis. In
our experimental evaluation in Section 8, we emulated
a data center environment with ModelNet [10] in order
to test the recovery time achievable with local recovery.
We show that a 100MB object can be recovered in 4ms
(excluding detection time), which directly translates to
increased system availability. Our analysis also show
that we achieve these availability improvements while
still maintaining high performance. Finally, we discuss
related work in Section 9 and conclude the paper.

2 MOTIVATION

An RSM provides the illusion of a single highly avail-
able state machine by maintaining a copy of that state
machine at multiple replicas [7], [11]. Any replica may
receive updates at any time. To maintain the same state
across replicas, an RSM uses a consistent replicated
log [12], [13], [14] to totally order updates with a con-
sensus protocol such as Paxos. The replicated log assigns
to every operation an index number representing the
position in the log at which the operation should be
executed by the RSM. We say that the index number of

Time

A B C

t0

A' B C

t2t1

A B C

t3

A' B C

In
di
ce
s

0

1

2

3

Fig. 1. State loss due to failure during recovery.

an operation is chosen once a quorum of replicas agree
on its index number, ensuring a totally-ordered sequence
of operations. The consensus safety property states that
at most one update will be chosen for any index. As
we focus on the Paxos consensus algorithm, we refer
to this safety property as Paxos safety. The consensus
liveness condition states that the system can only make
progress when a quorum of replicas are available. More
precisely, to maintain liveness, a quorum of replicas must
be available for every index.

Consider the scenario in Figure 1 with replicas A,B,C.
At time t0, some instances of consensus have already
completed and replica C lags behind A and B (perhaps
because it never received messages for index 2 due to
a transient network error). At t1, replica A permanently
fails. To regain fault tolerance, replicas B and C add a
replacement replica A′ to the group at t2 for index 3.
A′ has only learned the chosen value for the index that
added it to the group, but it can participate in consensus
for indices > 3. To acquire the remaining state, A′ begins
copying the prior values from B and C. At t3, B fails
and loses its state. Replica C has not yet copied index 2,
and replica A′ has only partially copied indices 0..2. The
system has lost the value for index 2. To maintain safety,
it must block permanently or request a human to resolve
potential conflicts. Note that, index 3 for consensus could
have blocked until A′ had recovered all of its state or C
has copied index 2, but B′s failure would still cause the
system to lose state and block permanently.

One can reduce the probability of losing state by
decreasing the time between replica failure and the full
availability of a new replica. This translates to improved
system availability. At first glance, a simple approach
to improve system availability would be to add more
replicas in a flat replication scheme, by increasing f ,
the number of tolerable failures. However, the message
complexity of consensus protocols is linear with the
number of replicas, and the latency is bounded by the
slowest replica in the consensus quorum. While these
requirements may not matter when the replicas are on
the same LAN, these factors can significantly hurt per-
formance with replicas separated by high-latency, low
bandwidth links. For example, with f = 1, the consensus
latency is only that of the closer of the two replicas.
If we use f = 2, consensus would require waiting for
two wide-area replies, with increasing possibility of one



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 3

taking longer than the other. Note that this cost is borne
even when there are no failures. Ideally, we want a
system that does not incur this additional cost in latency
or bandwidth.

While we consider a permanent failure model in this
paper, we note that, it may be possible to simply wait
for the machine to reboot to recover missing state. In
this scenario, the amount of wide-area communication
needed to re-synchronize the replica would be limited
to any missing updates during the reboot period. Un-
fortunately, reboot can take several tens of seconds in
the best case and since the fundamental problem with
the window of vulnerability remains, the system could
become unacceptably prone to unavailability as further
analyzed in Section 7.

3 OVERVIEW

We first state our system model and assumptions, which
is followed by a brief overview of ZORFU.

3.1 System Model
ZORFU provides the abstraction of a collection of highly-
available RSMs, which higher-level services can read or
update. Each RSM has its own Paxos-based replicated
log and associated replica set. The RSM stores applica-
tion state needed by cloud-based services. To meet the
demands of typical cloud services, ZORFU must be able
to support a large number of RSMs simultaneously; for
example, one might imagine the billions of objects stored
in Amazon’s S3 [9] each being backed by an RSM.

To achieve its target of high availability, ZORFU repli-
cates RSM replicas across multiple data centers. Each
data center may contain up to tens of thousands of ma-
chines [15], each of which may host relevant application
and replicated log state for many RSMs.

A client interacts with ZORFU by issuing requests to
a data center through the Internet. Clients may submit
requests to any data center hosting a replica, and the
set of data centers replicating an RSM may change
dynamically in response to failures. Typically, clients are
directed to their nearest data center in terms of latency.

We assume links connecting data centers are well-
provisioned and do not contribute to any significant
downtime. For simplicity, we ignore link downtime from
our analytic evaluation (Section 7). However, we note
that being well-provisioned, these links are different
from links between clients and data centers, for which
the general Internet path availability [1] is applicable.

Failure and Recovery Model: Traditionally, consensus
protocols assume nodes fail by crashing, but may later
recover with their state intact. In this work, we assume a
stronger notion of failure in which a machine irrevocably
loses all of its state when it fails (such as a disk loss). We
assume such a failure model because it is a pessimistic
assumption that allows us to explore worst-case recovery
times (Section 7). Specifically, we define a failed server to
be one that some other server believes to have crashed

and will never recover. As such, failed servers must be
replaced to maintain the same degree of fault tolerance.
As Paxos, ZORFU does not need a perfect failure detector.

Consistency Model: Unlike other wide-area replicated
services that offer high availability but only provide
weak consistency guarantees [3], ZORFU uses a consen-
sus algorithm to provide strong consistency. Requests to a
given RSM are executed in the same order at all replicas.

3.2 ZORFU Overview
We now give a brief overview of the core mechanisms
used by ZORFU to achieve its goal of high availability for
wide-area replicated services. ZORFU’s design focuses on
decreasing the recovery time by using:

1) Hierarchical replication and
2) Local recovery within each data center (site).

By localizing recovery within the site of the failed
replica, we can keep the number of wide-area message
exchanges small, both for the common case and when
there are failures. This is a key contributor to keeping the
recovery time small, even when the RSM state is large.
Also, having fewer wide-area exchanges in the critical-
path reduces the latency observable by clients.

To facilitate local recovery, we need more replicas
at each site. This calls for hierarchical replication [16],
[17], where we distinguish between replication across
sites and replication within a site. In ZORFU, we use
synchronous replication between sites, and asynchronous
replication within each site. Each site has a primary replica
and one or more backup replicas (we consider only
one backup here). The primaries at the different sites
maintain a replicated log, which is kept synchronously
updated with a Paxos-based RSM protocol. Within each
site, the local primary asynchronously sends updates to
the backups. ZORFU uses asynchronous replication to
limit the amount of bandwidth needed to update the
backups; however, this means that the backups may lag
slightly behind the primary. To resolve this issue, and to
facilitate local recovery, we develop a fault-tolerant and
scalable software switching service, as discussed next.

The switching service may consist of several switch
devices, as shown in Figure 2, each acting as both a
message cache and message forwarder. A single switch
is typically shared across several RSMs. A switch directs
messages to the appropriate RSM primary, in a similar
manner to that employed by front-end load balancers
present in most data centers. In addition, a switch also
acts as a message cache for certain Paxos messages
sent by the primary. Should a primary fail, ZORFU can
promote one of its backups to become the new primary
by sending it the Paxos state in the switch message cache.
This local recovery is transparent to the replicas at the
other sites and can be completed in milliseconds, even
for very large objects, requiring no wide-area messages.
This transparency is made possible by the switching
service and its addressing scheme, designed to isolate
local replicas from those in other sites (see Section 5.3).



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 4

Data Center Site

Switch 
2

Switch 
3

Machine 2
P05 B01

P06

P07

P08

B02

B03

B04

P01 Primary for RSM 01

B01 Backup for RSM 01

Machine 1
P01 B05

P02

P03

P04

B06

B07

B08

Machine 3
P09 B13

P10

P11

P12

B14

B15

B16

Machine 4
P13 B09

P14

P15

P16

B10

B11

B12

…
.

Legend:

….Switch 
1

Switch 1 Forwarding Table

RSM Primary Backup
01 Machine1, port#

02

05

13

….

Machine1, port#

Machine2, port#

Machine4, port#

Machine2, port#

Machine2, port#

Machine1, port#

Machine3, port#

Fig. 2. An example data center configuration with primary
and backup replicas, switches, and a forwarding table.

Figure 2 illustrates a simple allocation of primary
and backup replicas to machines in a data center. This
allocation is a dynamic optimization problem that needs
to consider several constraints. These constraints may
include the expected message load for each individual
RSM and switch, the available compute resources on
machines, and so on. Similar optimization problems
have been studied extensively in previous work [18],
[19]. Here the focus is on new techniques for amortizing
the cost of replication across machines hosting RSMs and
switches. The exact choice of allocation of RSMs and
switches is highly application dependent and dynamic,
and is beyond the scope of this paper.

4 THE ZORFU PROTOCOL

We describe the ZORFU protocol as a stepwise refinement
starting from the Paxos state machine [7]. In Step 0 we
review Paxos and some optimizations commonly used in
Paxos-based RSMs. We then introduce a backup replica
in Step 1 and a switch in Step 2. Then in Step 3 we
explain how the switch interacts with the primary and
backup replicas to facilitate local recovery. In Steps 4-6
we add mechanisms aimed at reducing overhead. In
each step we argue that the additions and changes we
make have no adverse effect on the correctness of Paxos.

Step 0: Paxos
Paxos [7] is a consensus algorithm that can be used to
consistently order client requests for an RSM.

Paxos is often described in terms of three separate
agent roles: proposers that can propose values for consen-
sus, acceptors that accept a value among those proposed,
and learners that learn the chosen value. A process may
implement multiple roles, and in a typical configuration
the proposer, acceptor, and learner combine to form a
Paxos server, or replica.

For a given index in a replicated log, Paxos provides
the safety property that at most one operation will ever
be chosen among a set of 2f + 1 replicas. Due to this
property, we can say that Paxos is safe for any number
of crash failures. Moreover, an RSM based on Paxos can
remain operational despite f crashes.

Paxos is used to consistently order operations for an
RSM. For every index, Paxos will try to decide on a value
that represents the operation to be executed at that index.
To decide on a value, Paxos may run one or more rounds.
Typically, one round is enough, but due to asynchrony
and failures, multiple rounds may be necessary.

Every round is associated with a single proposer
replica, which is the leader for that round. A proposer
can start a new round by sending a PREPARE message to
the acceptors, requesting that they promise not to accept
any old messages. Essentially, every round runs in two
phases: (1) A proposer collects a quorum of PROMISE
messages from acceptors in response to a previously
sent PREPARE message; and (2) the proposer then sends
ACCEPT messages for some value v to acceptors, who re-
spond by sending ACCEPTED messages to learners. The
proposer selects the value v for the ACCEPT message as
the value with the highest round among those provided
in the PROMISE messages. Or if no values are provided
in the PROMISE messages, any value can be chosen for v.
A value is said to be chosen when it has been accepted by
a quorum of replicas. A replica learns a value once it has
seen a quorum of ACCEPTED messages for that value. If
more than f replicas fail simultaneously, then the RSM
cannot make progress, in order to preserve safety.

Paxos optimizations: If a stable leader starts a new
index, knowing that no other leader will send PREPARE
or ACCEPT messages for that index, the leader can safely
propose any value, and thus can skip the first phase. The
leader also serves as a distinguished learner that sends
CHOSEN messages to the other replicas after receiving a
quorum of ACCEPTED responses. Next, Paxos also allows
for a simple optimization; if a replica receives a PREPARE
or ACCEPT for which it knows the chosen value, it
responds with a CHOSEN message containing this value.
Finally, if a replica believes that another replica S has
failed, it may propose a reconfiguration command to
have S removed from the RSM and replaced by a new
replica S′. Eventually, S is removed and S′ is added to
the RSM. This is called a Paxos reconfiguration [7], [20],
[21] and is essential to ZORFU.

Step 1: Introducing a Backup
In the ZORFU model, the primary implements the tradi-
tional Paxos replica. Each replica site (data center) has one
primary replica per RSM. Our first change is to introduce
a backup replica for each primary, i.e. one backup per
replica site. The backup runs on a separate machine in
the same site as its primary. We assume that each site
has a pool of machines available to host replicas and
that each machine may act as both primary or backup
for multiple RSMs. Figure 2 shows an example where



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 5

Switch

MaxForgotten k

Paxos Messages

Internet

Note: MaxForgotten ≤ j ≤ i ≤ k

Primary

Acceptor

i k

Learned

i k

Snapshot @ i

Backup
Snapshot @ j

Learned

j k

Fig. 3. ZORFU components and their queues. Each queue
may hold different sets of messages, hence the different
indices.

multiple primaries are allocated to the same machine,
and their corresponding backups are mapped to other
machines in the same site.

The backup is a standby replica used to speed up
the replacement of a failed primary. It is updated asyn-
chronously by the primary, and hence may lag behind.
The primary simply stores received Paxos messages in a
queue and later forwards them to the backup. Thus, the
addition of a backup does not introduce any protocol
changes from the perspective of the primary. In the
remaining steps, we introduce mechanisms to recover
messages lost due to asynchronous updates, should the
backup be promoted to primary.

Step 2: Introducing a Switch
We next introduce a switch for each RSM (primary and
backup) in a replica site. Multiple RSMs may share the
same switch. Figure 3 illustrates our model for three
sites, each with one primary replica, backup, and a
switch. In case of switch failure, a new switch can replace
the failed switch as we explain in Step 3.

The purpose of the switch is to intercept and for-
ward Paxos messages between its local primary and the
switches at the other replica sites. In this step, the switch
simply forwards messages, and thus does not introduce
any changes. The switch works with the backup to
enable local recovery without the usual reconfiguration
and state transfer required in Paxos.

Step 3: Role of the Switch
In this step of the refinement, the backup is not updated
with any state until the primary fails. The switch inter-
cepts Paxos messages to recover the primary should it
fail. To recover a primary, the new replica must have
the same learned values and acceptor state as the failed
primary. This can be determined from the messages that
the failed primary has sent to the switch. Note that
if the failed acceptor has made a promise or accepted
a value, but has not sent any messages reflecting this
change, then we do not need to recover this update, as
it could not have been observed externally. The switch

saves outgoing PROMISE and ACCEPTED messages, and
incoming CHOSEN messages. We will eliminate the latter
requirement in Step 5.

If the switch is notified that the primary has failed,
recovery is initiated by isolating the primary. During
recovery, this site will not participate in consensus or
respond to client requests. The switch begins to store
messages and suspends message forwarding to/from
the “failed” primary, so that even if it has not actually
failed, it cannot interfere with the remaining replicas.
The primary will eventually be notified of its removal
and terminate. The switch then promotes the backup to
become primary by sending it the stored messages. The
backup applies these messages to its state, in the order
received by the switch. Algorithm 1 shows the state
maintained by a backup, and how it is updated from
the switch. After applying these messages, the backup
will have the same state as the failed primary. This new
primary notifies the switch that recovery has completed,
and the switch resumes forwarding messages. Client
requests and Paxos messages from other sites will now
be forwarded to the new primary.

Algorithm 1 Backup Update to Become Primary
1: Initialization:
2: rnd[i]← ⊥ {Current round number of index i}
3: vrnd[i]← ⊥ {Round number of last vote for index i}
4: vval[i]← ⊥ {Value voted for in last round of index i}
5: learned[i]← ⊥ {Learned state of index i}

6: on 〈PROMISE, i, n〉 from switch
7: rnd[i]← n
8: on 〈ACCEPTED, i, n, v〉 from switch
9: vrnd[i]← n

10: vval[i]← v
11: on 〈CHOSEN, i, v〉 from switch
12: learned[i]← v

If the primary is notified that its switch has failed, a
new switch is initialized to replace the failed one. The
new switch blocks message forwarding until it receives
the necessary Paxos state from the primary. This is
important: if the switch tries to recover a backup before
having all the primary’s state, the backup will not have
the appropriate state to maintain safety. For each index
for which the primary has learned the chosen value,
it sends a CHOSEN message. For all other indices, the
primary sends ACCEPTED and/or PROMISE messages.

If the primary is notified that the backup has failed,
it initializes a new one by sending it all of its chosen
values. With this information the new backup can, with
the help of the switch, replace the primary should it fail.

If both switch and primary fail, they will eventually
be replaced through Paxos reconfiguration and wide-
area state transfer.



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 6

Step 4: Limiting Switch State by Discarding Prefixes
We now reduce the amount of state that the switch needs
to store. Upon learning a chosen value, the primary
sends that value to the backup. Once it receives chosen
values for all contiguous indices through i, the backup
notifies the switch. The switch keeps this value i in a
variable MaxForgotten, and discards its Paxos messages
for all indices through i.

If the switch is notified that the primary has failed,
it first checks that the backup is not in the process of
recovering so that local recovery may be performed. It
does this by sending MaxForgotten to the backup. If the
backup has all the chosen values through MaxForgotten,
it will copy the switch messages as discussed in Step 3
and assume the role of the primary. If the backup is
missing chosen values for any of these indices (because
it was replaced after a failure but had not completed
recovery) then local recovery cannot be performed. In
this case, the backup will be promoted to primary
through a Paxos reconfiguration and initialized through
state transfer from the other replica sites.

After a backup assumes the role of primary—either
through local recovery or a Paxos reconfiguration—a
new backup will be initialized. Recovery from switch
failure is identical to Step 3.

Step 5: Limiting Switch State by Discarding CHOSEN

We can further reduce switch state by removing the
requirement that the switch store CHOSEN messages. We
expect the backup has most of the chosen values, but
that it might be missing some of them. This is because
the backup is not kept fully synchronized with the pri-
mary, but is instead updated asynchronously. However,
the switch will contain the Paxos messages for all of
these indices, as they are guaranteed to be greater than
MaxForgotten. Thus, when being promoted to primary,
the backup will acquire the same acceptor state as the
failed primary even if it does not have the same learned
state for some indices. This new primary will be able to
learn the chosen values after recovery completes, e.g., by
running Paxos instances for these indices.

Step 6: Limiting Replica State with Snapshots
Now that we have shown how to limit the state stored
by the switch, we introduce application snapshots that
allow primaries and backups to discard Paxos state.
We define the snapshot at log index i as the state
resulting from executing all RSM commands through
index i. Replicas periodically exchange the indices of
their snapshots. When a replica learns that a quorum
of replicas have a snapshot at index at least i, then it
may discard all Paxos state up to i. Replicas will no
longer respond to Paxos messages for indices that have
been discarded; rather, we use a snapshot state transfer
mechanism similar to that of [13], [22].

Let k be the highest index proposed by the system,
let i be the primary’s snapshot index, and let j be the

backup’s snapshot index. ZORFU maintains the invariant
that for any site, MaxForgotten ≤ j ≤ i ≤ k (illustrated in
Figure 3). This property states that the messages stored
in the switch plus the snapshot and chosen values stored
by the backup will equal the required primary state for
local recovery. When a primary initializes a new backup,
it copies its snapshot and any chosen values larger than
the snapshot index. Should the primary fail before this
copy completes, the backup notifies the switch that it
does not have the state prior to MaxForgotten and will
fall back to a heavyweight Paxos reconfiguration and
state transfer from remote replicas across the wide-area.

5 DESIGN DETAILS

We now discuss certain design details important for an
implementation not covered by the protocol description.

5.1 Failure Detection
ZORFU uses a heartbeat-based failure detector [23] as
part of a failure detection service that monitors every
machine within a site. If a machine has not sent a
heartbeat within a given timeout, the system considers it
failed; we do not distinguish between actual failure and
slowness for local failure detection. The failure detector
will notify interested parties of detected failures, which
then respond appropriately. For instance, the failure de-
tector will notify a primary that its associated switch has
failed and vice versa. If a failed server resumes sending
heartbeats, the failure detector instructs it to deallocate
its local state so that it can be reassigned to another
RSM. Because the switch forwards all messages to the
new primary, a server that was incorrectly declared to
have failed cannot interfere with consensus; it will never
receive any new consensus messages or RSM operations.
Switches believed to have failed are similarly isolated.

The failure detection service is also used by a controller
component to assist with recovery, as described next.

5.2 Controller
As described in Section 3.1, in ZORFU each site will have
its own primary, backup, and switch servers for every
RSM. To coordinate the assignment of server replicas,
we use a logically centralized controller per site that
has knowledge of the site’s pool of available machines.
The controller maintains two tables. The first maps RSM
identifiers to the set of machines hosting the RSM’s
primary, backup, and switch. The second table is the
inverse, mapping from a machine to a list of RSMs
hosted on that machine.

A centralized implementation does not bottleneck the
system because the controller does not participate in
most RSM requests. Rather, the controller is only con-
sulted when an RSM is created or destroyed or when a
switch needs to look up an RSM-to-machine mapping.
The controller also initiates recovery when machines fail,
by creating new replicas or switches. Table 1 summarize



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 7

TABLE 1
Summary of recovery actions taken by the controller, switch, and replicas. Italic indicates remote actions.

Failed Primary Actions Secondary Actions

S Create new switch; Recover Paxos state from primary.
B Create new backup; Recover RSM state from primary.
P Promote backup; Recover missing Paxos state from switch. Create new backup; Recover RSM state from primary.
P,B Create new primary; Paxos reconfiguration and wide-area state transfer. Create new backup; Recover RSM state from primary.
S,B Create new switch; Recover Paxos state from primary. Create new backup; Recover RSM state from primary.
P, S Create new switch and primary; Paxos reconfiguration and wide-area state transfer. Synchronize backup from primary.
P,B, S Create new switch and primary; Paxos reconfiguration and wide-area state transfer. Create new backup; Recover RSM state from primary.

the recovery actions taken by the controller, switch, and
replicas for different failure scenarios.

We assume the controller itself is replicated for fault
tolerance. Should all the controller replicas fail, the map-
ping from RSMs-to-machines at that site would be lost.
In the rare case where a majority of replicas fail and
the controller state cannot quickly be recovered from
stable storage, we fall back to a relatively heavyweight
mechanism. The new controller broadcasts requests for
mappings to all the RSM servers in the site and uses the
responses to bootstrap the required state information.

5.3 Distributed Switches
A subtle yet important consideration for replicated ser-
vices deployed across multiple sites is the naming of
the replicas in a replica set. In an architecture where
every machine makes direct network connections to
every other, each replica in the replica set is an explicitly
named (i.e. by its IP address and port) server in a partic-
ular site. The primary implication of this naming scheme
is that information local to one site, i.e., the servers in
a given replica set, must be exposed to remote sites.
This precludes the possibility of masking failures in one
site from remote sites and necessitates a sophisticated
global failure detection system to detect server failures
and a global machine allocation system to replace failed
servers. The wide-area latencies separating sites make
accurate, prompt failure detection in the face of transient
network errors difficult. Any global server allocation
strategy would potentially have to track hundreds of
thousands of machines. Both would necessitate a marked
increase in wide-area traffic.

The ZORFU switches serve two primary purposes: for-
warding messages to the appropriate RSM replicas and
storing messages to enable local recovery. The switching
service allows replicas in a replica set to be named
as sites (specifically, a single IP address and port for
each site but not assigned to an actual server) rather
than as servers within a site. This design also allows all
information pertaining to an individual site, including
failure detection and machine allocation, to remain local
within that site.

Our switch servers run on commodity hardware and
implement a scalable software switching service. Clients
and remote sites may send messages to any switch at
the destination site. When a switch receives an outgoing

message, the message is immediately forwarded to the
destination. For incoming messages, the switch checks
whether it is responsible for the RSM named in the
message, consulting the controller if it does not have an
entry in its forwarding table. If so, the switch forwards
the message to the appropriate server. Otherwise, it
forwards the message to the switch responsible for the
RSM, which it learns from the controller.

We note that all switch state, including saved Paxos
messages, constitute soft state and need not be persis-
tently stored in the switches for correctness. Should the
switch lose any state, it may retrieve it from the author-
itative source for the data, either the controller for for-
warding entries or appropriate primaries for Paxos state.
If the switch does not have the necessary Paxos messages
to locally recover from a primary failure, its backup will
direct the switch to perform wide-area recovery. We also
note that while a server must process both Paxos logic
and application-level RSM logic, the switch’s processing
and storage requirements are limited to inspecting the
message type and saving certain messages. Thus, de-
pending on the RSM resource requirements, each switch
server may forward messages for many RSMs.

6 DISCUSSION OF ZORFU’S DESIGN CHOICES

We now contrast ZORFU’s design choices with several
design alternatives and examine their relative costs. We
use two of these designs also in our analysis in Section 7.

6.1 Design Alternatives
In the NoBackup design, an RSM’s state resides on one
machine in each site. If a replica in one site fails, a Paxos
reconfiguration is executed adding a replica to replace
the failed one. After reconfiguration, the new replica will
restore its state from replicas at other sites.

The WARBackup design reduces recovery time by hav-
ing several machines host the RSM at each site—one
serving as the primary and the others acting as backups.
This design is essentially ZORFU’s LocalRecovery without
the switches, so every primary failure entails a Paxos
reconfiguration. Since the promoted backup may not
have the complete state of the failed primary, some
state may still need to be copied from a remote site
before the new primary can participate in processing
RSM operations. If all of the backups fail before the new



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 8

primary can be brought up-to-date, the system will need
to fall back to the NoBackup design.

A slight variation on ZORFU’s LocalRecovery would
be to use site-internal synchronous replication instead
of asynchronous replication, allowing a simpler switch
design without the need to maintain Paxos state. This
would impose a marginal latency overhead compared
to the wide-area latencies involved. However, asyn-
chronous replication makes more efficient use of network
and compute resources, and this can help avoid latency
increases in highly loaded data center networks.

We also describe a Paxos-over-Paxos design which is
compatible with recovering locally. As such, this design
has recovery performance similar to LocalRecovery. The
design uses two separate synchronous replication proto-
cols, one between sites and another within each site.
That is, replicas within a site run Paxos to agree upon
messages sent to the other sites that participate in the
global Paxos protocol. This is similar to Steward [16]
but without Byzantine fault tolerance, and would need
d(2f + 1) replicas with d sites. Paxos-over-Paxos has the
benefit of simplicity and symmetry. To support local
recovery, the primary of a site can integrate our switch’s
functionality to isolate local replicas from other sites. In
ZORFU, we chose to keep these concerns in the switch,
separated from the primary. This keeps our primary
simple, and allows our switch to be implemented in
a programmable hardware switch, or as a module of
a middlebox component together with other front-end
functions [24], such as modules for intrusion detection,
caching, and load balancing.

6.2 Cost Analysis

The benefits of LocalRecovery do come with a cost in
terms of using more machine resources. Below we
compare the costs for the different design alternatives.
Clearly, a plain NoBackup approach is the least costly,
but as we show in Section 7, lacks in other respects.

To compare the machine resource costs for the various
design alternatives we introduce the following notation.
Let d denote the number of sites used to host RSMs, let R
be the total number of RSMs hosted by each site, and let
β be the average number of RSMs that share a machine.
Thus, each site needs R/β machines. The number of sites
d supported by a particular design is typically tightly
coupled with f , the number of replica failures that can
be masked. It is clearly possible to configure multiple
RSM replicas to reside in the same site, but that would
lead to asymmetry in the links between RSM replicas.

For WARBackup and LocalRecovery, there are exactly one
primary and b backups in each site. For LocalRecovery
we also rely on switches. Let γ be the average number
of RSMs per switch. Thus, each site needs R/γ switches.
Then, consider the resources N needed for LocalRecovery:

N = d(1 + b)R/β + dR/γ

= 6R/β + 3R/γ (b = 1, d = 3)

For a Paxos-over-Paxos design, each site needs 2f + 1
replicas, since Paxos needs to collect f + 1 replies to
make progress with synchronous replication. However,
with ZORFU’s switch and asynchronous replication, we
can reduce the number of replicas that need to maintain
full RSM state. ZORFU’s switch only stores Paxos state,
typically a small fraction of the RSM state. For a single
RSM, both ZORFU and Paxos-over-Paxos would require
the same amount of machine resources. However, a
single switch can be amortized over multiple RSMs,
as expressed with the γ parameter. If β > γ however,
i.e., there are more RSMs per machine than there are
RSMs per switch, then ZORFU is disadvantaged. But
this is unlikely, since the CPU overhead of the switch is
much lower than a full RSM replica. Furthermore, if the
machines used for switches are dedicated to this task,
these machines could be provisioned with additional
network IO resources. We note that d and b relate to
fault tolerance, while β and γ relate to the load on
machines and switches. The machine resource costs for
the different designs are summarized in Table 2.

TABLE 2
Comparing resource costs for the design alternatives.

Design Equation for N Costa N

NoBackup (f = 1) (2f + 1)R/β 3R/β
NoBackup (f = 2) (2f + 1)R/β 5R/β
WARBackup d(1 + b)R/β 6R/β
Paxos-over-Paxos d(2f + 1)R/β 9R/β
LocalRecovery d(1 + b)R/β + dR/γ 6R/β + 3R/γ
a Cost is given in terms of RSMs, R, average number of RSMs per

machine, β, and average number of RSMs that share a switch, γ.
Where relevant we use d = 3 sites, b = 1 backup, and f = 1.

7 DEPENDABILITY ANALYSIS

Next, we analyze the benefits of ZORFU’s LocalRecovery
design with respect to reducing the window of vulner-
ability. In LocalRecovery, the application and Paxos state
stored in primaries is replicated either on a local backup
or on a local switch. We evaluate the significance of each
of these components by comparing LocalRecovery with
two other designs—NoBackup and WARBackup.

Figure 4 shows the advantages of our LocalRecovery
design by comparing the total time taken to recover,
as well as the window of vulnerability for losing state
during recovery. We note that contention for the next
available index may prolong the reconfiguration window
(Section 8.2) for NoBackup and WARBackup.

7.1 Markov Dependability Models
To compare LocalRecovery with the other designs, we
constructed a Markov dependability model [25] for each
design. The goal of these models is to compare the
designs with respect to the expected time until first RSM
failure, denoted MTFF = E[TFF ], and the RSM avail-
ability. An RSM becomes unavailable when it reaches



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 9

(3) (4)(2)(1)

(3) (4)(2)(1)

Design
NoBackup

(1) Normal operation
(2) Failure undetected
(3) Reconfiguration at index x
(4) Wide-area recovery up to index x

(1) Normal operation
(2) Failure undetected
(3) Reconfiguration at index x; backup @ index k
(4) Wide-area recovery from k to x

(1) Normal operation
(2) Failure undetected
(3) Local recovery

(3)(2)(1) Failure

WARBackup

LocalRecovery X

X

X

X
Window of Vulnerability
Recovery Complete

X ...

Fig. 4. Comparison across design alternatives of timelines for recovery from failure.

a Markov state wherein processing operations would
violate Paxos safety. An RSM is distributed over 2f + 1
sites, where f is the number of replica failures that can be
masked. Moreover, since replicas are distributed across
the sites, f also corresponds to the number of site failures
that can be masked. We assume a fixed f=1, except for
NoBackup where we also consider f=2, i.e., replicas at
five sites. All application state is stored on one primary
per site. For WARBackup and LocalRecovery, there is also
one backup for each RSM per site.

Failed3p 2p*
3λp 2λp

µm

µnp

(a) NoBackup (f = 1)

Failed

3p3b

2p3b

µm

3p2b 3p1b

2p2b 2p1b

3p0bµnb

µpb
3λb

3λp

µnbµnb

µpb µpb
µnbµnb

λb

λb

2λb

3λp 3λp

2λb

2λp2λp
2λp

2p2b*

2p1b*

λb

µnp λb

µnp

2p0b*
λb

µnp

µnb

(b) WARBackup (f = 1)

Fig. 5. Markov model for two design alternatives.

In modeling the different designs (Figure 5), we examine
all the operational states (circles) and the down states
(squares). Each up state is identified by XpY b, where X
and Y represent the number of primaries and backups,
respectively. States annotated with a * indicate that wide-
area recovery is necessary. In the models, the order in
which the replicas fail is not important, and hence we
can represent several failure modes with fewer states.
In each model different failure rates, denoted λ, lead to
different states, weighted by the number of entities that
may fail from that state. The restore rates, denoted µ,
represent the expected time to recover from a state with

failures to another state with fewer failures. To determine
the availability of a design we introduce µm, denoting
manual restore from a down state to the fully operational
state. We assume an idealized scenario in which no log-
ical failures or failure of the recovery mechanism occur.
We omit a visual representation of the Markov model
for LocalRecovery because it involves three different en-
tities with quite complicated failure patterns. Instead,
we have programmatically generated an accurate model
representation based on the behaviors of LocalRecovery
(partially illustrated in Table 1). The generated model is
used in our analysis below, and consists of 512 states. The
model could have been simplified significantly, but to
obtain numerical solutions this is not necessary. See [25]
for additional details on the modeling framework.

TABLE 3
Failure rates and restore times for the different designs.
NB=NoBackup, WB=WARBackup, LR=LocalRecovery .

Parameters NB WB LR

Fa
ilu

re
ra

te
(λ

) Primary λp (50d)−1 and (100d)−1

Backup λb (50d)−1 and (100d)−1

Switch λs (50d)−1 and (100d)−1

R
es

to
ra

ti
on

ti
m

e
(µ

−
1

)

Promote backup to primary µ−1
pb — 10s - 5m —

Replace primary (remote copy) µ−1
np 5m - 5h 5h 5h

Replace backup (local copy) µ−1
nb — 1h 1h

Replace switch (local init) µ−1
ns — — 10s

Local recovery µ−1
lr — — 3.6s

Manual restore µ−1
m 5h 5h 5h

7.2 Analysis Results

We now evaluate the expected time to first failure and
unavailability for the Markov models above, under three
different operating regimes. The results were obtained
using a Mathematica package for symbolic and numerical
dependability analysis of Markov models [26]. Table 3
describes the notation used in the models and the pa-
rameter values used in the analysis.

We conduct our analysis for two values of λ−1=50
and 100 days. The former is representative of machine
reliability observed in cloud infrastructures [27], while
the latter represents more reliable and costly hardware.
As our analysis show, more reliable hardware benefits
NoBackup more than LocalRecovery. However, since we



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 10

TABLE 4
Unavailability and MTFF of an RSM for the different design alternatives.

(a) NoBackup, λ−1=50d

f = 1 f = 2

µ−1
np MTFF U MTFF U

5h 5.6y 1.0 · 10−3 136y 4.2 · 10−6

1h 27.5y 2.1 · 10−4 3310y 1.7 · 10−7

5m 329y 1.7 · 10−6 473687y 1.2 · 10−9

(b) λ−1=100d

f = 1 f = 2

MTFF U MTFF U

22.1y 2.6 · 10−5 1070y 5.3 · 10−7

110y 5.2 · 10−6 26389y 2.2 · 10−8

1315y 4.3 · 10−7 3.8 · 106y 1.5 · 10−10

(c) WARBackup, λ−1=50d

f = 1

µ−1
pb MTFF U

5m 329y 1.7 · 10−6

1m 1644y 3.5 · 10−7

10s 9863y 5.8 · 10−8

(d) λ−1=100d

f = 1

MTFF U

1315y 4.3 · 10−7

6576y 8.7 · 10−8

39452y 1.4 · 10−8

(e) LocalRecovery, λ−1=50d

P=Primary, B=Backup, S=Switch, =Down. f = 1

Up states for one Data Center MTFF U

P : {P , P S, PB , PBS} 2961y 1.5 · 10−10

BS : { BS,P , P S, PB , PBS} 1.97 · 106y 7.5 · 10−11

(f) λ−1=100d

f = 1

MTFF U

21291y 1.5 · 10−11

3.15 · 107y 4.7 · 10−12

specifically target a cloud environment, our analysis
focus on the most representative failure rate. The manual
restore rate is fixed to µ−1m =5h for all designs. A higher
manual restore rate would negatively impact NoBackup,
while LocalRecovery see almost no negative impact, even
for very long restore rates. For the remaining parameters,
we refer to Table 3, and argue that the various restoration
times are representative. For example in WARBackup
and LocalRecovery, we fix the time to replace a primary
across the wide-area to µ−1np =5h, and to replace a backup
from a local primary to µ−1nb =1h. These numbers could
represent an RSM with a 2GB state size, and link ca-
pacities reserved for recovery of 1Mbps for WAN and
5Mbps for LAN. For NoBackup, µ−1np varies from 5 hours
to 5 minutes, representing different RSM state sizes to
be recovered over the wide-area. For WARBackup, we
employ a µ−1pb that varies from 5 minutes to 10 sec-
onds, representing the time to promote a backup to
become primary. Note that, although our experimental
evaluation (Section 8) shows that LocalRecovery can be
completed in a few milliseconds, we use µ−1lr =3.6s to
account for failure detection time. Table 4 gives the
results of our analysis.

LocalRecovery (Table 4(e)) is evaluated for two inter-
pretations of availability. In the first model (P), a site is
considered to be up iff its primary is up. This is tech-
nically accurate, because only the primary can respond
to requests. However, the backup and switch together
have the same state as the failed primary, so we also
evaluate a model (BS) treating a site as up if its backup
and switch are up. This is reasonable since LocalRecovery
will restore the primary in at most a few seconds; clients
would experience a slight delay, typically accepted by
users of Internet services.

As the results show, NoBackup (f = 1) has what seems
to be “good enough” MTFF numbers for a practical
deployment. But recall that these numbers represent
idealized failure assumptions, and thus it is desirable
to further increase the MTFF. This is accomplished by
reducing the time to recover from a failure, which is a
distinguishing characteristic between the designs. Thus
as expected, WARBackup and LocalRecovery significantly
increase MTFF. Note the difference in MTFF between the
P and BS models. This is due to the P model accounting

for a small delay, while a backup and switch is recover-
ing a primary, as a down state. On the other hand, there
is only a relatively minor difference in unavailability for
the two models.

NoBackup (f = 1) only provides 2-3 nines of availabil-
ity for recovery times of 1-5 hours, which is much less
than the target of five nines desired by many services.
NoBackup (f = 2) does provide this availability, but
at the expense of potentially longer latencies for every
request, significantly increased message complexity and
bandwidth requirements, and higher processing require-
ments, as the resources needed by Paxos grows linearly
with f . Note that both LocalRecovery models yield better
availability than NoBackup (f = 2).

Beyond the benefits of fewer messages and processing
for every request relative to NoBackup (f = 2), WAR-
Backup and LocalRecovery greatly reduce the bandwidth
needed between sites for most types of recovery. If
services already use most of their bandwidth running
consensus for normal operations, then having to peri-
odically transfer large amounts of state between sites
for recovery may cause contention for bandwidth and
disrupt system throughput. Services may avoid a drop
in operational throughput by throttling recovery traffic,
but this will further increase the window of vulnerability,
prolonging the time to recover.

WARBackup and LocalRecovery also minimize disrup-
tion experienced by clients. Services try to direct clients
to the site that provides the best performance, signif-
icantly reducing the latency for client requests. While
the primary at that site is recovering, client requests
must be redirected to a different replica, increasing the
network delay for those requests. Because LocalRecovery
can recover very quickly, on the order of milliseconds,
a small amount of buffering in the switches will allow
services to completely mask a primary failure from the
client, providing significantly improved responsiveness
and performance.

Other factors not accounted for in our analysis, such as
correlated failures, logical failures, power outages, and
security threats will likely lead to lower availability than
what is shown in Table 4. However, what our analysis
does show is that by using LocalRecovery, we can shift the
“bottleneck” for RSM availability to these other factors.



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 11

0 0.5 1 1.5 2 2.5 3 3.5

NoBackup
WARBackup

LocalRecovery

3.58
2.67

0.53

Failure Undetected Reconfiguration Initiated Unsuccessful Reconfiguration Successful Reconfiguration Wide-area Copy

0 5 10 15 20 25

NoBackup
WARBackup

LocalRecovery

24.91
2.5

0.54

Fig. 6. Recovery time for a single RSM (seconds). Local recovery took 4ms. Top: 1MB object. Bottom: 100MB object.

8 EVALUATION

Our experimental evaluation aim to demonstrate that
ZORFU significantly reduces the recover time relative to
other techniques and that it increases the availability of all
RSMs. We implemented ZORFU and a replicated object
store using the C++-based MACE [28] toolkit for building
distributed systems. The object store provides highly
available storage for arbitrary blob objects on top of
ZORFU. Clients use it through the following API:

Create(obj) create a new object with name obj
Read(obj, offset, size) read size bytes from offset
Update(obj, offset, buffer) write the buffer to offset
Truncate(obj, size) truncate the object to size bytes

8.1 Experimental Setup
We use ModelNet [10] to emulate the environment nec-
essary to perform our evaluation. In our setup, three
data centers (A, B, and C) are pairwise-connected by
100Mbps links. To emulate a realistic geographic sepa-
ration between data centers, we assign 10ms of latency
between A-B, 20ms between A-C, and 50ms between
B-C. Each data center consists of a switch and four
servers each running on dedicated physical machines.
For experiments using backups, we use one backup per
RSM for each data center. Clients are connected to data
centers over an 8Mbps, 2ms link, and are multiplexed
onto three machines, up to four clients per machine. We
configure ModelNet so that traffic local to a data center
uses the physical GbE switch rather than going through
ModelNet. Each machine has a 2.13GHz quad-core Intel
Xeon CPU, 4GB RAM, and 1Gbps Ethernet.

To evaluate the three different recovery designs, we
use the same system implementation with varying con-
figurations for the number of backup servers (including
none). Because we use the same system for all designs,
our evaluation includes a version of NoBackup and WAR-
Backup using switches (that do not maintain Paxos state),
even though these designs could also operate without a
switch. However, the overhead of the switch in these
experiments is negligible.

8.2 Time to Recover
We measure the breakdown of recovery time for the
three designs NoBackup, WARBackup, and LocalRecovery,

for two different object sizes of 1MB and 100MB. For
each of these six experiments, a single client connects to
data center B and begins issuing 4KB pipelined updates
with up to 64 outstanding, up to a total of 15000 updates.
At approximately 10 seconds into the run, we kill the
server acting as the primary replica at data center B.
Figure 6 shows the resulting recovery timeline for the
six experiments.

These graphs illustrate how quickly ZORFU recovers
relative to the other two design choices. Because no
Paxos reconfiguration or wide-area data transfer is re-
quired, the switch can promote a backup to replace the
failed replica in just a few milliseconds, a time too small
to be pictured on the graphs. For both 1MB and 100MB
objects, the recovery completes in 4ms; because local
recovery only copies the most recent Paxos messages,
it is independent of object size. Indeed, local recovery
is dominated by the failure detection time, or approxi-
mately 500ms for our failure detector.

Figure 6 plot timeline graphs for each experiment, split
into different time shares for each phase of recovery.
Local recovery completes in just two phases: 1) time to
detect failure, and 2) copy Paxos state (too small to plot
on a second time scale). For the other two designs, we
break wide-area recovery time into five phases:
1) Failure Detection Approximately 500ms.
2) Reconfiguration Initiation This phase accounts for
the switch querying the remote replicas for their high-
est chosen index for the relevant RSM. We note that
the NoBackup results reflect expected recovery times for
ZORFU when it experiences simultaneous failures of the
primary and all backups, and that WARBackup reflects
the scenario when the switch has lost its Paxos state,
preventing local recovery.
3) Unsuccessful Reconfiguration Attempts A reconfig-
uration proposal may not be chosen at the requested
index because of contention with other proposals. This
contention is still possible even when using a leader that
limits its number of outstanding proposals to some fixed
amount α. One of the other replicas may be lagging,
then believe that the leader has failed and attempt to
initiate reconfiguration. Because the replica was lagging,
it does not know the last index at which the leader
issued a proposal, so it cannot compute the correct next



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 12

10 20 30 40 50 60
0

50

100

150

200

250

Time (seconds)

W
ri

te
s/

se
co

nd

NoBackup
WARBackup
LocalRecovery

10 20 30 40 50 60
0

50

100

150

200

250

Time (seconds)

W
ri

te
s/

se
co

nd

NoBackup
WARBackup
LocalRecovery

Fig. 7. Client throughput during failure of its local replica. Left: 1MB object. Right: 100MB object.

uncontested index, even though it knows that should be
α after the last index.
4) Successful Reconfiguration This represents the time
for three-phase Paxos to choose the Paxos configuration
for an uncontested index. Once completed, the replace-
ment replica has been added to the configuration.
5) Wide-area Data Copy As soon as the reconfiguration
completes, the new replica begins transferring state from
other wide-area replicas to bring itself up-to-date. Even
without LocalRecovery, having a local backup vastly re-
duces the amount of data that must be copied—and the
window of vulnerability—for larger objects.

Figure 7 shows the effect of the replica’s failure on
the client’s throughput. The failure of the client’s local
replica represents the worst possible failure condition
from that client’s perspective, as some of the client’s
outstanding requests are lost when the failure occurs.
Throughput is sampled once per second. The effect of the
failure is much more pronounced for a 100MB object, as
the service is unavailable from the client’s perspective
while the wide-area data transfer portion of recovery
is taking place. We note that for any of the recovery
scenarios, the client could have maintained throughput
even during recovery by sending its requests to one of
the other replicas.

9 RELATED WORK

We build on a large body work, in particular pro-
tocols for building replicated state machines for fault
tolerance [7], [11], virtual synchrony for ordering re-
quests [29], and replicated logs [12]. Recent efforts have
focused on making Paxos perform well in real-world us-
age scenarios, and [30] provides a thorough specification
and evaluation of Paxos. Researchers at Google [14] have
provided insight into how a real-world Paxos implemen-
tation handles different classes of failures not explored
in the original protocol. While Paxos can be made very
efficient in LAN environments, latency becomes an issue
in wide-area settings. Mencius [31] delivers high perfor-
mance for Paxos in a wide-area setting by partitioning
the leader role for proposals among replicas in a round-
robin fashion. However, the focus of Mencius is on wide-
area performance, and it provides the same availability
as classic Paxos [7]; however, their approach could be

combined with ZORFU. EPaxos [32] is another Paxos
variant designed for high performance in the wide-area.
EPaxos takes advantage of the insight that for many
workloads, it is not necessary to enforce a consistent
ordering for commands that do not interfere with each
other. They avoid the bottleneck of a global leader, and
instead use a separate leader for each command together
with a fast-path quorum to detect conflicting commands.
Without conflicts, commands can be committed quickly.
Steward [16] addresses the problem of providing Byzan-
tine fault tolerance in a wide-area setting consisting of
a number of wide-area sites containing several server
replicas. Steward also takes a hierarchical approach in
which a BFT protocol is used within each site, and
a Paxos-like protocol is used across wide-area sites.
Steward requires 3f +1 replicas at each site to tolerate f
failures at any site. More generally, given the large num-
ber of RSMs and machines in our target environment,
we believe the overhead for variations of hierarchical
replication to be prohibitively high. As we discussed
in Section 6, a scaled-down version of Steward could
use 2f + 1 replicas in each site, but with our switch we
can more easily share machine resources.

Previous systems have addressed the challenge of
achieving high availability over wide-area networks
by relaxing consistency guarantees [3]. ZORFU guaran-
tees strong consistency, which is important for a range
of cloud computing services. Windows Azure Storage
(WAS) [5] is a highly-available cloud storage service
claiming to provide all three properties of the CAP the-
orem [33] by using an underlying append-only storage
together with mechanisms for sealing append data only
when enough replicas has seen the update. In WAS, syn-
chronous replication is used within a data center, while
asynchronous replication is used across the wide-area.
This removes the wide-area latency from the critical-
path, making the trade-off that a data center failure may
lead to data loss. In ZORFU we took the opposite design
choice, requiring a majority of replica sites commit to
a request. The wide-area recovery performance of WAS
is not evident from [5]. Similar to ZORFU, Megastore
from Google [4] is also based on a synchronous wide-
area Paxos, but does not asynchronously update a local
backup in each data center. Instead they provide a spe-



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 13

cial coordinator service to facilitate fast reads. BigTable
is used for storage. Like ZORFU, SMART [13] attempts to
decrease the amount of state transferred during recovery.
It does this by letting new replicas use part of all the
other co-located replicas’ shared state. Similarly, [34] uses
linear programing to compute a schedule for faster state
transfer from the remote replicas. ZORFU could leverage
such techniques, but our local recovery mechanism will
render these wide-area copies rare.

Our main contribution is on reducing the window of
vulnerability during failure recovery. Recovery-oriented
computing [35] shares our goal of increased availability
by decreasing recovery time from inevitable failures,
rather than by trying to prevent them. Recovery has also
been studied extensively in the context of group com-
munication and CORBA. FT CORBA [36] standardizes
mechanisms such as a generic factory, a logically cen-
tralized replication manager (our controller), and a fault
monitoring architecture. Several frameworks [37], [38],
[39], [40] that draw inspiration from the standard have
been implemented. These frameworks use a centralized
controller like ZORFU, except [40] where the controller is
distributed among the replicas. Although [39], [40] also
target wide-area replication, none of these frameworks
provide a local recovery mechanism.

10 CONCLUSION

We consider a practical problem in the deployment of
a distributed service with strong consistency: how does
one recover from server failures? We show that the
solution to this problem has a significant impact on
the availability of services, such as a data store. Our
solution, ZORFU, provides a scalable implementation of
local recovery that significantly reduces the window of
vulnerability during failure recovery. We show that this
results in much lower probability of system failure than
to simply increase the number of replicas. We derive
ZORFU from Paxos and evaluate its availability both
analytically and experimentally. Our results show that
the recovery time for individual failures is reduced by
more than an order of magnitude over conventional
recovery techniques, thus providing high availability.
In summary, ZORFU provides cloud-based services with
the simplicity of strong consistency semantics and high
availability, while still maintaining high performance.

ACKNOWLEDGEMENTS

We thank Harsha V. Madhyastha, Meg Walraed-Sullivan,
Roman Vitenberg, and Leander Jehl for feedback on early
drafts of the paper. Prof. Meling was partially supported
by the Tidal News project under grant no. 201406 from
the Research Council of Norway.

REFERENCES
[1] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and

D. Wetherall, “Improving the Reliability of Internet Paths with
One-hop Source Routing,” in OSDI, 2004.

[2] F. B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,” ACM Comput. Surv., 1990.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-Value Store,” in SOSP,
2007.

[4] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Pro-
viding scalable, highly available storage for interactive services,”
in CIDR, 2011.

[5] B. Calder et al., “Windows azure storage: a highly available cloud
storage service with strong consistency,” in SOSP, 2011.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s
globally-distributed database,” in OSDI, 2012.

[7] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[8] ——, “Paxos Made Simple,” ACM SIGACT News, vol. 32, no. 4,
2001.

[9] D. Taft, “Amazon’s Head Start in the Cloud Pays Off,”
http://www.eweek.com/c/a/Cloud-Computing/Amazons-
Head-Start-in-the-Cloud-Pays-Off-584083/, 2009.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
and D. Becker, “Scalability and accuracy in a large-scale network
emulator,” in OSDI, 2002.

[11] B. M. Oki and B. H. Liskov, “Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems,” in PODC, 1988.

[12] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
OSDI, 1999.

[13] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur,
and J. Howell, “The SMART way to migrate replicated stateful
services,” in EuroSys, 2006.

[14] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
an engineering perspective,” in PODC, 2007.

[15] K. Church, A. Greenberg, and J. Hamilton, “On delivering em-
barrassingly distributed cloud services,” in HotNets, 2008.

[16] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Steward: Scaling byzantine fault-tolerant
replication to wide area networks,” IEEE Trans. Dependable Sec.
Comput., vol. 7, no. 1, pp. 80–93, 2010.

[17] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane, “Customizable fault
tolerance for wide-area replication,” in SRDS, 2007.

[18] M. J. Csorba, H. Meling, and P. E. Heegaard, “A bio-inspired
method for distributed deployment of services,” New Generation
Computing, vol. 29, no. 2, pp. 185–222, Jan 2011.

[19] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“Performance and availability aware regeneration for cloud based
multitier applications,” in DSN, 2010.

[20] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state
machine,” SIGACT News, vol. 41, pp. 63–73, March 2010.

[21] J. W. Anderson, “Consistent cloud computing storage as the basis
for distributed applications,” Ph.D. dissertation, UCSD, 2011.

[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative Byzantine Fault Tolerance,” in SOSP, 2007.

[23] K. C. W. So and E. G. Sirer, “Latency and bandwidth-minimizing
failure detectors,” in EuroSys, 2007.

[24] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat,
“xOMB: Extensible Open Middleboxes with Commodity Servers,”
in ANCS, 2012.

[25] B. E. Helvik, Dependable Computing Systems and Communication
Networks – Design and Evaluation. Tapir academic publisher, 2009.

[26] ——, “Dependability analysis with reliability block diagrams,”
library.wolfram.com/infocenter/MathSource/7371, 2009.

[27] J. Dean, “Designs, lessons and advice from building large dis-
tributed systems,” in LADIS, 2009.

[28] C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat,
“Mace: Language Support for Building Distributed Systems,” in
PLDI, 2007.



IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 14

[29] K. P. Birman, “The Process Group Approach to Reliable Dis-
tributed Computing,” CACM, vol. 36, no. 12, 1993.

[30] J. Kirsch and Y. Amir, “Paxos for System Builders,” in LADIS,
2008.

[31] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building
Efficient Replicated State Machine for WANs,” in OSDI, 2008.

[32] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more
consensus in egalitarian parliaments,” in SOSP, 2013.

[33] E. A. Brewer, “Towards Robust Distributed Systems (Invited
Talk),” in PODC, 2000.

[34] N. Raghavan and R. Vitenberg, “Balancing communication load
of state transfer in replicated systems,” in SRDS, 2011.

[35] G. Candea, A. B. Brown, A. Fox, and D. Patterson, “Recovery-
oriented computing: Building multitier dependability,” Computer,
vol. 37, pp. 60–67, 2004.

[36] OMG, “Fault Tolerant CORBA Specification,” OMG Document
ptc/00-04-04, Apr. 2000.

[37] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Eternal
– a Component-Based Framework for Transparent Fault-Tolerant
CORBA,” Softw., Pract. Exper., vol. 32, no. 8, pp. 771–788, 2002.

[38] Y. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. Karr, P. Rubel,
C. Sabnis, W. H. Sanders, R. E. Schantz, and M. Seri, “AQuA:
An Adaptive Architecture that Provides Dependable Distributed
Objects,” IEEE Trans. Comput., vol. 52, no. 1, pp. 31–50, Jan. 2003.

[39] H. Meling, A. Montresor, B. E. Helvik, and O. Babaoglu,
“Jgroup/ARM: a distributed object group platform with au-
tonomous replication management,” Softw., Pract. Exper., vol. 38,
no. 9, pp. 885–923, July 2008.

[40] H. Meling and J. L. Gilje, “A Distributed Approach to Au-
tonomous Fault Treatment in Spread,” in EDCC, 2008.

James W. Anderson completed his Ph.D. in
the Systems and Networking Group at UC San
Diego in 2011. He now works on research and
development for a small technology firm in NYC.

Hein Meling is Professor at the Department of
Electrical Engineering and Computer Science at
the University of Stavanger, Norway, where he
runs a small research group developing systems
and protocols to improve the robustness of net-
work services. He was co-principle investigator
on the IS-home and Tidal News projects funded
by the Research Council of Norway, focusing
on fault tolerance and recovery in distributed
event-based systems and geo-replicated cloud
computing infrastructures.

Meling’s research interests span dependable and secure computer
systems, including distributed systems and data center networks. He
received a Ph.D. in 2006 from the Norwegian University of Science
and Technology. He spent his sabbatical in 2010/11 at University of
California, San Diego, working on Paxos-based protocols for robust and
secure network services.

Alexander Rasmussen is a Senior Software
Engineer at Trifacta, Inc. Prior to joining Trifacta,
Dr. Rasmussen earned his Ph.D. at University
of California San Diego, where his research fo-
cused on efficient large-scale data processing.

Amin Vahdat is a Fellow and Technical Lead
for Networking at Google. He has contributed to
Google’s data center, wide area, edge/CDN, and
cloud networking infrastructure, with a particular
focus on driving vertical integration across large-
scale compute, networking, and storage. He is
an Adjunct Faculty member in the Department
of Computer Science and Engineering at the
University of California San Diego. He was a
Professor in the Computer Science and Engi-
neering Department from 2003-2013.

Vahdat’s research focuses broadly on computer systems, including
distributed systems, networks, and operating systems. He received a
Ph.D. in Computer Science from UC Berkeley under the supervision of
Thomas Anderson after spending the last year and a half as a Research
Associate at the University of Washington. Vahdat is an ACM Fellow
and a past recipient of the the NSF CAREER award, the Alfred P. Sloan
Fellowship, and the Duke University David and Janet Vaughn Teaching
Award.

Keith Marzullo is the Director of the Fed-
eral Networking and Information Technology Re-
search and Development (NITRD) National Co-
ordination Office (NCO). He performed this re-
search as a professor at the University of Cali-
fornia, San Diegos Computer Science and En-
gineering Department, where he served as the
Department Chair from 2006-2010. Dr. Marzullo
received his Ph.D. in Electrical Engineering from
Stanford University, where he developed the
Xerox Research Internet Clock Synchronization

protocol, one of the first practical fault-tolerant protocols for keeping
widely-distributed clocks synchronized with each other.


